Lapidarium notes RSS

Amira Skomorowska's notes

"Everything you can imagine is real."— Pablo Picasso

Lapidarium

Tags:

Africa
Age of information
Ancient
Anthropology
Art
Artificial intelligence
Astronomy
Atheism
Beauty
Biography
Books
China
Christianity
Civilization
Cognition, perception, relativity
Cognitive science
Collective intelligence
Communication
Consciousness
Creativity
Culture
Curiosity
Cyberspace
Democracy
Documentary
Drawing
Earth
Economy
Evolution
Friendship
Funny
Future
Genetics
Globalization
Happiness
History
Human being
Illustrations
Imagination
Individualism
Infographics
Information
Inspiration
Internet
Knowledge
Language
Learning
Life
Literature
Logic
Love
Mathematics
Media
Metaphor
Mind & Brain
Multiculturalism
Music
Networks
Neuroscience
Painting
Paradoxes
Patterns
Philosophy
Poetry
Politics
Physics
Psychology
Rationalism
Religions
Science
Science & Art
Self improvement
Semantics
Society
Sociology
Storytelling
Technology
The other
Time
Timeline
Traveling
Unconsciousness
Universe
USA
Video
Violence
Visualization


Pensieri a caso
Photography
A Box Of Stories
Reading Space
Homepage

Twitter
Facebook

Contact

Archive

Jun
3rd
Sun
permalink

Self as Symbol. The loopy nature of consciousness trips up scientists studying themselves

              
                                                          M.C. Escher’s “Drawing Hands”

"The consciousness problem remains popular on lists of problems that might never be solved.

Perhaps that’s because the consciousness problem is inherently similar to another famous problem that actually has been proved unsolvable: finding a self-consistent set of axioms for deducing all of mathematics. As the Austrian logician Kurt Gödel proved eight decades ago, no such axiomatic system is possible; any system as complicated as arithmetic contains true statements that cannot be proved within the system.

Gödel’s proof emerged from deep insights into the self-referential nature of mathematical statements. He showed how a system referring to itself creates paradoxes that cannot be logically resolved — and so certain questions cannot in principle be answered. Consciousness, in a way, is in the same logical boat. At its core, consciousness is self-referential awareness, the self’s sense of its own existence. It is consciousness itself that is trying to explain consciousness.

Self-reference, feedback loops, paradoxes and Gödel’s proof all play central roles in the view of consciousness articulated by Douglas Hofstadter in his 2007 book I Am a Strange Loop. Hofstadter is (among other things) a computer scientist, and he views consciousness through lenses unfamiliar to most neuroscientists. In his eyes, it’s not so bizarre to compare math and numbers to the mind and consciousness. Math is, after all, deeply concerned with logic and reason — the stuff of thought. Mathematical paradoxes, Hofstadter points out, open up “profound questions concerning the nature of reasoning — and thus concerning the elusive nature of thinking — and thus concerning the mysterious nature of the human mind itself.”

Enter the loop

In particular, Hofstadter seizes on Gödel’s insight that a mathematical formula — a statement about a number — can itself be represented by a number. So you can take the number describing a formula and insert that number into the formula, which then becomes a statement about itself. Such a self-referential capability introduces a certain “loopiness” into mathematics, Hofstadter notes, something like the famous Escher print of a right hand drawing a left hand, which in turn is drawing the right hand. This “strange loopiness” in math suggested to Hofstadter that something similar is going on in human thought.

So when he titled his book “I Am a Strange Loop,” Hofstadter didn’t mean that he was personally loopy, but that the concept of an individual — a persistent identity, an “I,” that accompanies what people refer to as consciousness — is a loop of a certain sort. It’s a feedback loop, like the circuit that turns a whisper into an ear-piercing screech when the microphone whispered into is too close to the loudspeaker emitting the sound.

But consciousness is more than just an ordinary feedback loop. It’s a strange loop, which Hofstadter describes as a loop capable of perceiving patterns in its environment and assigning common symbolic meanings to sufficiently similar patterns. An acoustic feedback loop generates no symbols, just noise. A human brain, though, can assign symbols to patterns. While patterns of dots on a TV screen are just dots to a mosquito, to a person, the same dots evoke symbols, such as football players, talk show hosts or NCIS agents. Floods of raw sensory data trigger perceptions that fall into categories designated by “symbols that stand for abstract regularities in the world,” Hofstadter asserts. Human brains create vast repertoires of these symbols, conferring the “power to represent phenomena of unlimited complexity and thus to twist back and to engulf themselves via a strange loop.”

Consciousness itself occurs when a system with such ability creates a higher-level symbol, a symbol for the ability to create symbols. That symbol is the self. The I. Consciousness. “You and I are mirages that perceive themselves,” Hofstadter writes.

This self-generated symbol of the self operates only on the level of symbols. It has no access to the workings of nerve cells and neurotransmitters, the microscopic electrochemical machinery of neurobiological life. The symbols that consciousness contemplates don’t look much like the real thing, the way a map of Texas conveys nothing of the grass and dirt and asphalt and bricks that cover the physical territory.

And just like a map of Texas remains remarkably stable over many decades — it doesn’t change with each new pothole in a Dallas street — human self-identity remains stable over a lifetime, despite constant changes on the micro level of proteins and cells. As an individual grows, matures, changes in many minute ways, the conscious self’s identity remains intact, just as Texas remains Texas even as new skyscrapers rise in the cities, farms grow different crops and the Red River sometimes shifts the boundary with Oklahoma a bit.

If consciousness were merely a map, a convenient shortcut symbol for a complex mess of neurobiological signaling, perhaps it wouldn’t be so hard to figure out. But its mysteries multiply because the symbol is generated by the thing doing the symbolizing. It’s like Gödel’s numbers that refer to formulas that represent truths about numbers; this self-referentialism creates unanswerable questions, unsolvable problems.

A typical example of such a Gödelian paradox is the following sentence: This sentence cannot be true.

Is that sentence true? Obviously not, because it says it isn’t true. But wait — then it is true. Except that it can’t be. Self-referential sentences seem to have it both ways — or neither way.

And so perceptual systems able to symbolize themselves — self-referential minds — can’t be explained just by understanding the parts that compose them. Simply describing how electric charges travel along nerve cells, how small molecules jump from one cell to another, how such signaling sends messages from one part of the brain to another — none of that explains consciousness any more than knowing the English alphabet letter by letter (and even the rules of grammar) will tell you the meaning of Shakespeare’s poetry.

Hofstadter does not contend, of course, that all the biochemistry and cellular communication is irrelevant. It provides the machinery for perceiving and symbolizing that makes the strange loop of consciousness possible. It’s just that consciousness does not itself deal with molecules and cells; it copes with thoughts and emotions, hopes and fears, ideas and desires. Just as numbers can represent the complexities of all of mathematics (including numbers), a brain can represent the complexities of experience (including the brain itself). Gödel’s proof showed that math is “incomplete”; it contains truths that can’t be proven. And consciousness is a truth of a sort that can’t be comprehended within a system of molecules and cells alone.

That doesn’t mean that consciousness can never be understood — Gödel’s work did not undermine human understanding of mathematics, it enriched it. And so the realization that consciousness is self-referential could also usher in a deeper understanding of what the word means — what it symbolizes.

Information handler

Viewed as a symbol, consciousness is very much like many of the other grand ideas of science. An atom is not so much a thing as an idea, a symbol for matter’s ultimate constituents, and the modern physical understanding of atoms bears virtually no resemblance to the original conception in the minds of the ancient Greeks who named them. Even Francis Crick’s gene made from DNA turned out to be much more elusive than the “unit of heredity” imagined by Gregor Mendel in the 19th century. The later coinage of the word gene to describe such units long remained a symbol; early 20th century experiments allowed geneticists to deduce a lot about genes, but nobody really had a clue what a gene was.

“In a sense people were just as vague about what genes were in the 1920s as they are now about consciousness,” Crick said in 1998. “It was exactly the same. The more professional people in the field, which was biochemistry at that time, thought that it was a problem that was too early to tackle.”

It turned out that with genes, their physical implementation didn’t really matter as much as the information storage and processing that genes engaged in. DNA is in essence a map, containing codes allowing one set of molecules to be transcribed into others necessary for life. It’s a lot easier to make a million copies of a map of Texas than to make a million Texases; DNA’s genetic mapping power is the secret that made the proliferation of life on Earth possible. Similarly, consciousness is deeply involved in representing information (with symbols) and putting that information together to make sense of the world. It’s the brain’s information processing powers that allow the mind to symbolize itself.

Koch believes that focusing on information could sharpen science’s understanding of consciousness. A brain’s ability to find patterns in influxes of sensory data, to send signals back and forth to integrate all that data into a coherent picture of reality and to trigger appropriate responses all seem to be processes that could be quantified and perhaps even explained with the math that describes how information works.

“Ultimately I think the key thing that matters is information,” Koch says. “You have these causal interactions and they can be quantified using information theory. Somehow out of that consciousness has to arrive.” An inevitable consequence of this point of view is that consciousness doesn’t care what kind of information processors are doing all its jobs — whether nerve cells or transistors.

“It’s not the stuff out of which your brain is made,” Koch says. “It’s what that stuff represents that’s conscious, and that tells us that lots of other systems could be conscious too.”

Perhaps, in the end, it will be the ability to create unmistakable features of consciousness in some stuff other than a biological brain that will signal success in the quest for an explanation. But it’s doubtful that experimentally exposing consciousness as not exclusively human will displace humankind’s belief in its own primacy. People will probably always believe that it can only be the strange loop of human consciousness that makes the world go ’round.

“We … draw conceptual boundaries around entities that we easily perceive, and in so doing we carve out what seems to us to be reality,” Hofstadter wrote. “The ‘I’ we create for each of us is a quintessential example of such a perceived or invented reality, and it does such a good job of explaining our behavior that it becomes the hub around which the rest of the world seems to rotate.”

Tom Siegfried, American journalist, author, Self as Symbol, Science News, Feb 11, 2012.

See also:

☞ Laura Sanders, Ph.D. in Molecular Biology from the University of Southern California in Los Angeles, Emblems of Awareness, Science News, Feb 11, 2012.

                                            Degress of thought

                                          (Credit: Stanford University)

"Awareness typically tracks with wakefulness — especially in normal states of consciousness (bold). People in coma or under general anesthesia score low on both measures, appearing asleep with no signs of awareness. Sometimes, wakefulness and awareness become uncoupled, such as among people in a persistent vegetative state. In this case, a person seems awake and is sometimes able to move but is unaware of the surroundings."  (…)

“Messages constantly zing around the brain in complex patterns, as if trillions of tiny balls were simultaneously dropped into a pinball machine, each with a prescribed, mission-critical path. This constant flow of information might be what creates consciousness — and interruptions might destroy it. (…)

“If you knock on a wooden table or a bucket full of nothing, you get different noises,” Massimini says. “If you knock on the brain that is healthy and conscious, you get a very complex noise.” (…)

In the same way that “life” evades a single, clear definition (growth, reproduction or a healthy metabolism could all apply), consciousness might turn out to be a collection of remarkable phenomena, Seth says. “If we can explain different aspects of consciousness, then my hope is that it will start to seem slightly less mysterious that there is consciousness at all in the universe.” (…)

Recipe for consciousness

Somehow a sense of self emerges from the many interactions of nerve cells and neurotransmitters in the brain — but a single source behind the phenomenon remains elusive.

            

                                                      Illustration: Nicolle Rager Fuller

1. Parietal cortex Brain activity in the parietal cortex is diminished by anesthetics, when people fall into a deep sleep and in people in a vegetative state or coma. There is some evidence suggesting that the parietal cortex is where first-person perspective is generated.

2. Frontal cortex Some researchers argue that parts of the frontal cortex (along with connections to the parietal cortex) are required for consciousness. But other scientists point to a few studies in which people with damaged frontal areas retain consciousness.

3. Claustrum An enigmatic, thin sheet of neural tissue called the claustrum has connections with many other regions. Though the structure has been largely ignored by modern scientists, Francis Crick became keenly interested in the claustrum’s role in consciousness just before his death in 2004.

4. Thalamus As one of the brain’s busiest hubs of activity, the thalamus is believed by many to have an important role in consciousness. Damage to even a small spot in the thalamus can lead to consciousness disorders.

5. Reticular activating system Damage to a particular group of nerve cell clusters, called the reticular activating system and found in the brain stem, can render a person comatose.”

☞ Bruce Hood, The Self Illusion: How the Brain Creates Identity
Theories of consciousness. Make Up Your Own Mind (visualization)
Malcolm MacIver on why did consciousness evolve, and how can we modify it?
Consciousness tag on Lapidarium