Lapidarium notes RSS

Amira Skomorowska's notes

"Everything you can imagine is real."— Pablo Picasso

Lapidarium

Tags:

Africa
Age of information
Ancient
Anthropology
Art
Artificial intelligence
Astronomy
Atheism
Beauty
Biography
Books
China
Christianity
Civilization
Cognition, perception, relativity
Cognitive science
Collective intelligence
Communication
Consciousness
Creativity
Culture
Curiosity
Cyberspace
Democracy
Documentary
Drawing
Earth
Economy
Evolution
Friendship
Funny
Future
Genetics
Globalization
Happiness
History
Human being
Illustrations
Imagination
Individualism
Infographics
Information
Inspiration
Internet
Knowledge
Language
Learning
Life
Literature
Logic
Love
Mathematics
Media
Metaphor
Mind & Brain
Multiculturalism
Music
Networks
Neuroscience
Painting
Paradoxes
Patterns
Philosophy
Poetry
Politics
Physics
Psychology
Rationalism
Religions
Science
Science & Art
Self improvement
Semantics
Society
Sociology
Storytelling
Technology
The other
Time
Timeline
Traveling
Unconsciousness
Universe
USA
Video
Violence
Visualization


Homepage
Twitter
Facebook

A Box Of Stories
Reading Space

Contact

Archive

Nov
1st
Fri
permalink

Bill Gates: ‘If you think connectivity is the key thing, that’s great. I don’t. The world is not flat and PCs are not, in the hierarchy of human needs’


The internet is not going to save the world, whatever Mark Zuckerberg and Silicon Valley’s tech billionaires believe. (…) But eradicating disease just might.

Bill Gates describes himself as a technocrat. But he does not believe that technology will save the world. Or, to be more precise, he does not believe it can solve a tangle of entrenched and interrelated problems that afflict humanity’s most vulnerable: the spread of diseases in the developing world and the poverty, lack of opportunity and despair they engender. “I certainly love the IT thing,” he says. “But when we want to improve lives, you’ve got to deal with more basic things like child survival, child nutrition.

These days, it seems that every West Coast billionaire has a vision for how technology can make the world a better place. A central part of this new consensus is that the internet is an inevitable force for social and economic improvement; that connectivity is a social good in itself. It was a view that recently led Mark Zuckerberg to outline a plan for getting the world’s unconnected 5 billion people online, an effort the Facebook boss called “one of the greatest challenges of our generation”. But asked whether giving the planet an internet connection is more important than finding a vaccination for malaria, the co-founder of Microsoft and world’s second-richest man does not hide his irritation: “As a priority? It’s a joke.

Then, slipping back into the sarcasm that often breaks through when he is at his most engaged, he adds: “Take this malaria vaccine, [this] weird thing that I’m thinking of. Hmm, which is more important, connectivity or malaria vaccine? If you think connectivity is the key thing, that’s great. I don’t.” (…)

Gates says now. “The world is not flat and PCs are not, in the hierarchy of human needs, in the first five rungs.” (…)

To Diamandis’s argument that there is more good to be done in the world by building new industries than by giving away money, meanwhile, he has a brisk retort: “Industries are only valuable to the degree they meet human needs. There’s not some – at least in my psyche – this notion of, oh, we need new industries. We need children not to die, we need people to have an opportunity to get a good education.” (…)

Gates describes himself as a natural optimist. But he admits that the fight with the US government seriously challenged his belief that the best outcome would always prevail. With a typically generalising sweep across history, he declares that governments have “worked pretty well on balance in playing their role to improve the human condition” and that in the US since 1776, “the government’s played an absolutely central role and something wonderful has happened”. But that doesn’t settle his unease.

“The closer you get to it and see how the sausage is made, the more you go, oh my God! These guys don’t even actually know the budget. It makes you think: can complex, technocratically deep things – like running a healthcare system properly in the US in terms of impact and cost – can that get done? It hangs in the balance.”

It isn’t just governments that may be unequal to the task. On this analysis, the democratic process in most countries is also straining to cope with the problems thrown up by the modern world, placing responsibilities on voters that they can hardly be expected to fulfil. “The idea that all these people are going to vote and have an opinion about subjects that are increasingly complex – where what seems, you might think … the easy answer [is] not the real answer. It’s a very interesting problem. Do democracies faced with these current problems do these things well?.”

An exclusive interview with Bill Gates, The Financial Times, Nov 1, 2013, Photo

Sep
29th
Sun
permalink

Kevin Kelly: The Improbable is the New Normal

"The improbable consists of more than just accidents. The internets are also brimming with improbable feats of performance — someone who can run up a side of a building, or slide down suburban roof tops, or stack up cups faster than you can blink. Not just humans, but pets open doors, ride scooters, and paint pictures. The improbable also includes extraordinary levels of super human achievements: people doing astonishing memory tasks, or imitating all the accents of the world. In these extreme feats we see the super in humans.

Every minute a new impossible thing is uploaded to the internet and that improbable event becomes just one of hundreds of extraordinary events that we’ll see or hear about today. The internet is like a lens which focuses the extraordinary into a beam, and that beam has become our illumination. It compresses the unlikely into a small viewable band of everyday-ness. As long as we are online - which is almost all day many days — we are illuminated by this compressed extraordinariness. It is the new normal.

That light of super-ness changes us. We no longer want mere presentations, we want the best, greatest, the most extraordinary presenters alive, as in TED. We don’t want to watch people playing games, we want to watch the highlights of the highlights, the most amazing moves, catches, runs, shots, and kicks, each one more remarkable and improbable than the other.

We are also exposed to the greatest range of human experience, the heaviest person, shortest midgets, longest mustache — the entire universe of superlatives! Superlatives were once rare — by definition — but now we see multiple videos of superlatives all day long, and they seem normal. Humans have always treasured drawings and photos of the weird extremes of humanity (early National Geographics), but there is an intimacy about watching these extremities on video on our phones while we wait at the dentist. They are now much realer, and they fill our heads.

I see no end to this dynamic. Cameras are becoming ubiquitous, so as our collective recorded life expands, we’ll accumulate thousands of videos showing people being struck by lightening. When we all wear tiny cameras all the time, then the most improbable accident, the most superlative achievement, the most extreme actions of anyone alive will be recorded and shared around the world in real time. Soon only the most extraordinary moments of our 6 billion citizens will fill our streams. So henceforth rather than be surrounded by ordinariness we’ll float in extraordinariness. (…)

When the improbable dominates the archive to the point that it seems as if the library contains ONLY the impossible, then these improbabilities don’t feel as improbable. (…)

To the uninformed, the increased prevalence of improbable events will make it easier to believe in impossible things. A steady diet of coincidences makes it easy to believe they are more than just coincidences, right? But to the informed, a slew of improbably events make it clear that the unlikely sequence, the outlier, the black swan event, must be part of the story. After all, in 100 flips of the penny you are just as likely to get 100 heads in a row as any other sequence. But in both cases, when improbable events dominate our view — when we see an internet river streaming nothing but 100 heads in a row — it makes the improbable more intimate, nearer.

I am unsure of what this intimacy with the improbable does to us. What happens if we spend all day exposed to the extremes of life, to a steady stream of the most improbable events, and try to run ordinary lives in a background hum of superlatives? What happens when the extraordinary becomes ordinary?

The good news may be that it cultivates in us an expanded sense of what is possible for humans, and for human life, and so expand us. The bad news may be that this insatiable appetite for supe-superlatives leads to dissatisfaction with anything ordinary.”

Kevin Kelly, is the founding executive editor of Wired magazine, and a former editor/publisher of the Whole Earth Catalog, The Improbable is the New Normal, The Technium, 7 Jan, 2013. (Photo source)

Feb
20th
Wed
permalink

Albert Bandura on social learning, the origins of morality, and the impact of technological change on human nature

image

"Technology has changed the speed and the scope of social influence and has really transformed our realities. Social cognitive theory is very compatible with that. Other learning theories were linked to learning by direct experience, but when I look around today, I see that most of our learning is by social modeling and through indirect experiences. Errors can be very costly and you can’t afford to develop our values, our competences, our political systems, our religious systems through trial and error. Modeling shortcuts this process. (…)

With new technologies, we’re essentially transcending our physical environment and more and more of our values and attitudes and behavior are now shaped in the symbolic environment – the symbolic environment is the big one rather than the actual one. The changes are so rapid that there are more and more areas of life now in which the cyber world is really essential. One model can affect millions of people worldwide, it can shape their experiences and behaviors. We don’t have to rely on trial and error.

There’s a new challenge now: When I was growing up, we didn’t have all this technology, so we were heavily involved in personal relationships. Now the cyber world is available, and it’s hard to maintain a balance in the priorities of life. (…)

The internet can provide you with fantastic globalized information – but the problem is this: It undermines our ability for self-regulation or self-management. The first way to undermine productivity is temporizing, namely we’re going to put off what we need to do until tomorrow, when we have the illusion that we’ll have more time. So we’re dragging the stuff with us. But the really big way is detouring, and wireless devices are now giving an infinite detour. They create the illusion of business. I talked to the author of a beststeller and I asked him about his writing style. He said: ‘Well, I have to check my e-mails and then I get down to serious writing, but then I get back to the e-mails.’ The challenge of the cyber world is establishing a balance between our digital life and life in the real world. (…)

The origins of morality

Originally our behavior was pretty much shaped by control, by the external consequences of our lives. So the question is: How did we acquire some standards? There are about three or four ways. One: We evaluate reactions to our behavior. We behave in certain ways, in good ways, in bad ways, and then we receive feedback. We begin to adopt standards from how the social environment reacts to our behavior. Two: We see others behaving in certain ways and we are either self-critical or self-approving. Three: We have precepts that tell us what is good and bad. And once we have certain self-sanctions, we have two other potent factors that can influence our behavior: People will behave in certain ways because they want to avoid legal sanctions to their behavior or the social sanctions in their environment. (…)

Many of our theories of morality are abstract. But the primary concern about the acquisition of morality and about the modes of moral reasoning is only one half of the story, the less interesting half. We adopt standards, but we have about eight mechanisms by which we selectively disengage from those standards. So the challenge to explain is not why do people behave in accordance with these standards, but how is it that people can behave cruelly and still feel good about themselves. Our problem is good people doing bad things – and not evil people doing bad things. (…)

Everyday people can behave very badly. In the book I’m writing on that topic I have a long chapter on moralist disengagement in the media, in the gun industry, in the tobacco industry, in the corporate world, in the finance industry – there’s fantastic data from the last few years – in terrorism and as an impediment to environmental sustainability. That’s probably the most important area of moralist disengagement. We have about forty or fifty years, and if we don’t get our act together, we’ll have a very hard time. It’s going to be awfully crowded on earth and a good part of our cities will be under water. And what are we doing? We don’t have the luxury of time anymore. (…)

Human nature is capable of vindicating behavior. It isn’t that people are bad by nature. But they have a very playful and rewarding lifestyle, filled with gadgets and air conditioning, and they don’t want to give it up. (…)

Q: ‘The story of men is a story about violence, love, power, victory and defeat’ – that’s how poets talk about the course of history. But from an analystic point of view…

A. Bandura: That’s not true for all societies. We assume that aggression is inbred, but some societies are remarkably pacifistic. And we can also see large variations within a society. But the most striking example might be the transformation from warrior societies into peaceful societies. Switzerland is one example. Sweden is another: Those vikings were out mugging everyone and people would pray for protection: “Save our souls from the fury of the Norsemen!” And now, if you look at that society, it’s hard to find child abuse or domestic violence. Sweden has become a mediator of peace.

Q: In German, there’s the term “Schicksalsgemeinschaft,” which translates as “community of fate”: It posits that a nation is bound together by history. Do you think that’s what defines a society: A common history? Or is it religion, or the language we speak?

A. Bandura: All of the above. We put a lot of emphasis on biological evolution, but what we don’t emphasize is that cultures evolve, too. These changes are transmitted from one generation to another. A few decades ago, the role of women was to be housewives and it was considered sinful to co-habit without being married. If you look at the role of women today, there’s a fantastic transformation in a short period of time; change is accelerated. Homogenization is important, picking things from different cultures, cuisines, music traditions, forms of behavior, and so on. But we have also polarization: Bin Laden’s hate of the West, for example. And there’s hybridization as well. (…)

And society is changing, too. Now it’s considered completely normal to live with your partner without being married. In California, it was only about 40 years ago that homosexuality was treated as a disease. Then people protested, and eventually they got the state to change the diagnostic category to sexual orientation rather than a disease. Psychiatry, under public pressure, changed the diagnostic system. (…)

Q: It’s quite interesting to compare Russia and China. Russia has a free internet, so the reaction to protests is very different than in China. If social networks become increasingly global, do you foresee something like a global set of values as well?

A. Bandura: Yes, but there is another factor here, namely the tremendous power of multinational corporations. They now shape global culture. A lot of these global forces are undermining the collective African society, for example. The society does no longer have much control over the economy. In order to restore some power in leverage, societies are going to be organized in unions. We will see more partnerships around the world. (…)

The revolutionary tendency of technology has increased our sense of agency. If I have access to all global knowledge, I would have fantastic capacities to educate myself. (…) The important thing in psychology is that we need a theory of human agency, rather than arguing that we’re controlled by neural networks. In every aspect of our lives we now have a greater capacity for exercicing agency. (…)

Q: But at the same time globalization removes us from the forces that shape our environment.

A. Bandura: The problems are powerful transnational forces. They can undermine the capacity to run our own society: Because of what happens in Iran, gas prices might soon hit five dollars per gallon in the US. That’s where the pressure comes from for systems and societies to form blocks or build up leverage to protect the quality of life of their citizens. But we can see that a global culture is emerging. One example is the transformation of the status of women. Oppressive regimes see that women are able to drive cars, and they cannot continue to deny that right to them. We’re really changing norms. Thanks to the ubiquity of television, we’re motivating them and showing them that they have the capability to initiate change. It’s about agency: Change is deeply rooted in the belief that my actions can have an effect in the world.”

Albert Bandura, a psychologist who is the David Starr Jordan Professor Emeritus of Social Science in Psychology at Stanford University. For almost six decades, he has been responsible for contributions to many fields of psychology, including social cognitive theory, therapy and personality psychology, and was also influential in the transition between behaviorism and cognitive psychology, "We have transcended our biology, The European, 18.02.2013. (Photo: Linda A. Cicero / Stanford News Service)

See also:

‘Human beings are learning machines,’ says philosopher (nature vs. nurture), Lapidarium notes
What Neuroscience Tells Us About Morality: ‘Morality is a form of decision-making, and is based on emotions, not logic’

Jan
22nd
Tue
permalink

Nicholas Carr on the meaning of ‘searching’ these days

        image

"All collected data had come to a final end. Nothing was left to be collected. But all collected data had yet to be completely correlated and put together in all possible relationships. A timeless interval was spent doing that."

— Isaac Asimov, “The Last Question”, cited in John Battelle's The Search

"When we talk about “searching” these days, we’re almost always talking about using Google to find something online. That’s quite a twist for a word that has long carried existential connotations, that has been bound up in our sense of what it means to be conscious and alive. We don’t just search for car keys or missing socks. We search for truth and meaning, for love, for transcendence, for peace, for ourselves. To be human is to be a searcher.

In its highest form, a search has no well-defined object. It’s open-ended, an act of exploration that takes us out into the world, beyond the self, in order to know the world, and the self, more fully. T. S. Eliot expressed this sense of searching in his famously eloquent lines from “Little Gidding”:

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

Google searches have always been more cut and dried, keyed as they are to particular words or phrases. But in its original conception, the Google search engine did transport us into a messy and confusing world—the world of the web—with the intent of helping us make some sense of it. It pushed us outward, away from ourselves. It was a means of exploration. That’s much less the case now. Google’s conception of searching has changed markedly since those early days, and that means our own idea of what it means to search is changing as well.

Google’s goal is no longer to read the web. It’s to read us. Ray Kurzweil, the inventor and AI speculator, recently joined the company as its director of research. His general focus will be on machine learning and natural language processing. But his particular concern, as he said in a recent interview, will entail reconfiguring the company’s search engine to focus not outwardly on the world but inwardly on the user:

“I envision some years from now that the majority of search queries will be answered without you actually asking. It’ll just know this is something that you’re going to want to see.” While it may take some years to develop this technology, Kurzweil added that he personally thinks it will be embedded into what Google offers currently, rather than as a stand-alone product necessarily.

(…) Back in 2006, Eric Schmidt, then the company’s CEO, said that Google’s “ultimate product” would be a service that would “tell me what I should be typing.” It would give you an answer before you asked a question, obviating the need for searching entirely. (…)

In its new design, Google’s search engine doesn’t push us outward; it turns us inward. It gives us information that fits the behavior and needs and biases we have displayed in the past, as meticulously interpreted by Google’s algorithms. Because it reinforces the existing state of the self rather than challenging it, it subverts the act of searching. We find out little about anything, least of all ourselves, through self-absorption. (…)

To be turned inward, to listen to speech that is only a copy, or reflection, of our own speech, is to keep the universe alone. To free ourselves from that prison — the prison we now call personalization — we need to voyage outward to discover “counter-love,” to hear “original response.” As Frost understood, a true search is as dangerous as it is essential. It’s about breaking the shackles of the self, not tightening them.

There was a time, back when Larry Page and Sergey Brin were young and naive and idealistic, that Google spoke to us with the voice of original response. Now, what Google seeks to give us is copy speech, our own voice returned to us.”

Nicholas Carr, American writer who has published books and articles on technology, business, and culture, The searchers, Rough Type, Jan 13, 2013.

See also:

The Filter Bubble: Eli Pariser on What the Internet Is Hiding From You
☞ Tim Adams, Google and the future of search: Amit Singhal and the Knowledge Graph, The Observer, 19 January 2013.

Aug
22nd
Wed
permalink

The Nature of Consciousness: How the Internet Could Learn to Feel

       

“The average human brain has a hundred billion neurons and synapses on the order of a hundred trillion or so. But it’s not just sheer numbers. It’s the incredibly complex and specific ways in which these things are wired up. That’s what makes it different from a gigantic sand dune, which might have a billion particles of sand, or from a galaxy. Our Milky Way, for example, contains a hundred billion suns, but the way these suns interact is very simple compared to the way neurons interact with each other. (…)

It doesn’t matter so much that you’re made out of neurons and bones and muscles. Obviously, if we lose neurons in a stroke or in a degenerative disease like Alzheimer’s, we lose consciousness. But in principle, what matters for consciousness is the fact that you have these incredibly complicated little machines, these little switching devices called nerve cells and synapses, and they’re wired together in amazingly complicated ways.

The Internet now already has a couple of billion nodes. Each node is a computer. Each one of these computers contains a couple of billion transistors, so it is in principle possible that the complexity of the Internet is such that it feels like something to be conscious. I mean, that’s what it would be if the Internet as a whole has consciousness. Depending on the exact state of the transistors in the Internet, it might feel sad one day and happy another day, or whatever the equivalent is in Internet space. (…)

What I’m serious about is that the Internet, in principle, could have conscious states. Now, do these conscious states express happiness? Do they express pain? Pleasure? Anger? Red? Blue? That really depends on the exact kind of relationship between the transistors, the nodes, the computers. It’s more difficult to ascertain what exactly it feels. But there’s no question that in principle it could feel something. (…)

Q: Would humans recognize that certain parts of the Internet are conscious? Or is that beyond our understanding?

That’s an excellent question. If we had a theory of consciousness, we could analyze it and say yes, this entity, this simulacrum, is conscious. Or because it displays independent behavior. At some point, suddenly it develops some autonomous behavior that nobody programmed into it, right? Then, people would go, “Whoa! What just happened here?” It just sort of self-organized in some really weird way. It wasn’t a bug. It wasn’t a virus. It wasn’t a botnet that was paid for by some nefarious organization. It did it by itself. If this autonomous behavior happens on a regular basis, then I think many people would say, yeah, I guess it’s alive in some sense, and it may have conscious sensation. (…)

Q: How do you define consciousness?

Typically, it means having subjective states. You see something. You hear something. You’re aware of yourself. You’re angry. You’re sad. Those are all different conscious states. Now, that’s not a very precise definition. But if you think historically, almost every scientific field has a working definition and the definitions are subject to change. For example, my Caltech colleague Michael Brown has redefined planets. So Pluto is not a planet anymore, right? Because astronomers got together and decided that. And what’s a gene? A gene is very tricky to define. Over the last 50 years, people have had all sorts of changing definitions. Consciousness is not easy to define, but don’t worry too much about the definition. Otherwise, you get trapped in endless discussions about what exactly you mean. It’s much more important to have a working definition, run with it, do experiments, and then modify it as necessary. (…)

I see a universe that’s conducive to the formation of stable molecules and to life. And I do believe complexity is associated with consciousness. Therefore, we seem to live in a universe that’s particularly conducive to the emergence of consciousness. That’s why I call myself a “romantic reductionist.”

Christof Koch, American neuroscientist working on the neural basis of consciousness, Professor of Cognitive and Behavioral Biology at California Institute of Technology, The Nature of Consciousness: How the Internet Could Learn to Feel, The Atlantic, Aug 22, 2012. (Illustration: folkert: Noosphere)

See also:

Google and the Myceliation of Consciousness
Richard Doyle on Creativity, evolution of mind and the rhetorical membrane between humans and an informational universe
Consciousness tag on Lapidarium

May
20th
Sun
permalink

The Difference Between Online Knowledge and Truly Open Knowledge. In the era of the Internet facts are not bricks but networks

    
                                                             Image: Library of Congress

“Knowledge is not a result merely of filtering or algorithms. It results from a far more complex process that is social, goal-driven, contextual, and culturally-bound. We get to knowledge — especially “actionable” knowledge — by having desires and curiosity, through plotting and play, by being wrong more often than right, by talking with others and forming social bonds, by applying methods and then backing away from them, by calculation and serendipity, by rationality and intuition, by institutional processes and social roles. Most important in this regard, where the decisions are tough and knowledge is hard to come by, knowledge is not determined by information, for it is the knowing process that first decides which information is relevant, and how it is to be used.”

David Weinberger, The Problem with the Data-Information-Knowledge-Wisdom Hierarchy, Harvard Business Review, Feb 2, 2010.

"The digitization of 21st-century media, Weinberger argues, leads not to the creation of a “global village" but rather to a new understanding of what knowledge is, to a change in the basic epistemology governing the universe. And this McLuhanesque transformation, in turn, reveals the general truth of the Heideggarian vision. Knowledge qua knowledge, Weinberger claims, is increasingly enmeshed in webs of discourse: culture-dependent and theory-free.

The causal force lying behind this massive sea change is, of course, the internet. Google search results — “9,560,000 results for ‘Heidegger’ in .71 seconds”) — taunt you with the realization that there are still another 950,000-odd pages of results to get through before you reach the end. The existence of hyperlinks is enough to convince even the most stubborn positivist that there is always another side to the story. And on the web, fringe believers can always find each other and marinate in their own illusions. The “web world” is too big to ever know. There is always another link. In the era of the Internet, Weinberger argues, facts are not bricks. They are networks. (…)

The most important aspect of Heidegger’s thought for our purposes is his understanding that human beings (or rather “Dasein,” “being-in-the-world”) are always thrown into a particular context, existing within already existing language structures and pre-determined meanings. In other words, the world is like the web, and we, Dasein, live inside the links. (…)

If our starting point is that all knowledge is networked, and always has been, then we are in a far better point to start talking about what makes today’s epistemological infastructure different from the infrastrucure in 1983. But we are also in a position to ask: if all knowledge was networked knowledge, even in 1983, than how did we not behave as if it was so? How did humanity carry on? Why did civilization not collapse into a morass of post-modern chaos? Weinberger’s answer is, once again, McLuhanesque. It was the medium in which knowledge was contained that created the difference. Stable borders around knowledge were built by books.

I would posit a different answer: if knowledge has always been networked knowledge, than facts have never had stable containers. Most of the time, though, we more or less act as if they do. Within philosophical subfield known as Actor-Network Theory (ANT) this “acting-as-if-stability-existed” is referred to as “black boxing.” One of the black boxes around knowledge might very well be the book. But black boxes can also include algorithms, census bureaus, libraries, laboratories, and news rooms. Black boxes emerge out of actually-existing knowledge networks, stabilize for a time, and unravel, and our goal as thinkers and scholars ought to be understanding how these nodes emerge and disappear. In other words, understanding changes to knowledge in this way leaves us far more sensitive to the operations of power than does the notoriously power-free perspective of Marshall McLuhan. (…)

Why don’t I care that the Google results page goes on towards infinity? If we avoid Marshall McLuhan’s easy answers to these complex questions, and retain the core of Heidegger’s brilliant insights while also adding a hefty dose of ontology to his largely immaterial philosophy, we might begin to understand the real operations of digital knowledge/power in a networked age.

Weinberger, however, does not care about power, and more or less admits this himself in a brilliant essay 2008 on the distinction between digital realists, utopians, and dystopians. Digital utopians, a group in which he includes himself, “point to the ways in which the Web has changed some of the basic assumptions about how we live together, removing old obstacles and enabling shiny new possibilities.” The realists, on the other hand, are rather dull: They argue that “the Web hasn’t had nearly as much effect as the utopians and dystopians proclaim. The Web carries with it certain possibilities and limitations, but (the realists say) not many more than other major communications medium.” Politically speaking, digital utopianism tantalizes us with the promise of what might be, and pushes us to do better. The political problem with the realist position, Weinberger argues, is that it “is … [a] decision that leans toward supporting the status quo because what-is is more knowable than what might be.”

The realist position, however, is not necessarily a position of quietude. Done well, digital realism can sensitize us to the fact that all networked knowledge systems eventually become brick walls, that these brick walls are maintained through technological, political, cultural, economic, and organizational forms of power. Our job, as thinkers and teachers, is not to stand back and claim that the all bricks have crumbled. Rather, our job is to understand how the wall gets built, and how we might try to build it differently.”

C.W. Anderson, Ph.D, an assistant professor in the Department of Media Culture at the College of Staten Island (CUNY), researcher at the Columbia University Graduate School of Journalism, The Difference Between Online Knowledge and Truly Open Knowledge, The Atlantic, Feb 3, 2012.

David Weinberger: ‘I think the Net generation is beginning to see knowledge in a way that is closer to the truth about knowledge’

"I think the Net generation is beginning to see knowledge in a way that is closer to the truth about knowledge — a truth we’ve long known but couldn’t instantiate. My generation, and the many generations before mine, have thought about knowledge as being the collected set of trusted content, typically expressed in libraries full of books. Our tradition has taken the trans-generational project of building this Library of Knowledge book by book as our God-given task as humans. Yet, for the coming generation, knowing looks less like capturing truths in books than engaging in never-settled networks of discussion and argument. That social activity — collaborative and contentious, often at the same time — is a more accurate reflection of our condition as imperfect social creatures trying to understand a world that is too big and too complex for even the biggest-headed expert.

This new topology of knowledge reflects the topology of the Net. The Net (and especially the Web) is constructed quite literally out of links, each of which expresses some human interest. If I link to a site, it’s because I think it matters in some way, and I want it to matter that way to you. The result is a World Wide Web with billions of pages and probably trillions of links that is a direct reflection of what matters to us humans, for better or worse. The knowledge networks that live in this new ecosystem share in that property; they are built out of, and reflect, human interest. Like our collective interests, the Web and the knowledge that resides there is at odds and linked in conversation. That’s why the Internet, for all its weirdness, feels so familiar and comfortable to so many of us. And that’s the sense in which I think networked knowledge is more “natural.” (…)

To make a smart room — a knowledge network — you have to have just enough diversity. And it has to be the right type of diversity. Scott Page in The Difference says that a group needs a diversity of perspectives and skill sets if it is going to be smarter than the smartest person in it. It also clearly needs a set of coping skills, norms, and procedures that enable it to deal with diversity productively. (…)

We humans can only see things from a point of view, and we can only understand things by appropriating them into our already-existing context. (…)

In fact, the idea of objectivity arose in response to the limitations of paper, as did so much of our traditional Western idea of knowledge. Paper is a disconnected medium. So, when you write a news story, you have to encapsulate something quite complex in just a relatively small rectangle of print. You know that the reader has no easy way to check what you’re saying, or to explore further on her own; to do so, she’ll have to put down the paper, go to a local library, and start combing through texts that are less current than the newspaper in which your article appears. The reporter was the one mediator of the world the reader would encounter, so the report had to avoid the mediator’s point of view and try to reflect all sides of contentious issues. Objectivity arose to address the disconnected nature of paper.

Our new medium is, of course, wildly connective. Now we can explore beyond the news rectangle just by clicking. There is no longer an imperative to squeeze the world into small, self-contained boxes. Hyperlinks remove the limitations that objectivity was invented to address.

Hyperlinks also enable readers to understand — and thus perhaps discount — the writer’s point of view, which is often a better way of getting past the writer’s prejudices than asking the writer to write as if she or he had none. This, of course, inverts the old model that assumed that if we knew about the journalist’s personal opinions, her or his work would be less credible. Now we often think that the work becomes more credible if the author is straightforward about his or her standpoint. That’s the sense in which transparency is the new objectivity.

There is still value in trying to recognize how one’s own standpoint and assumptions distort one’s vision of the world; emotional and conceptual empathy are of continuing importance because they are how we embody the truth that we share a world with others to home that world matters differently. But we are coming to accept that we can’t really get a view from nowhere, and if we could, we would have no idea what we’re looking at. (…)

Our new ability to know the world at a scale never before imaginable may not bring us our old type of understanding, but understanding and knowledge are not motivated only by the desire to feel that sudden gasp of insight. The opposite and ancient motive is to feel the breath of awe in the face of the almighty unknowability of our universe. A knowing that recognizes its object is so vast that it outstrips understanding makes us more capable of awe. (…)

Technodeterminism is the claim that technology by itself has predictable, determinant effects on people or culture. (…) We still need to be able to discuss how a technology is affecting a culture in general. Generalizations can be a vehicle of truth, so long as they are understood to be only generally true. (…) The new knowledge continues to find generalities that connect individual instances, but because the new ecosystem is hyperlinked, we can go from the generalities back to the individual cases. And those generalizations are themselves linked into a system of difference and disagreement.”

David Weinberger, Ph.D. from the University of Toronto, American technologist, professional speaker, and commentator, interviewed by Rebecca J. Rosen, What the Internet Means for How We Think About the World, The Atlantic, Jan 5 2012.

See also:

To Know, but Not Understand: David Weinberger on Science and Big Data, The Atlantic, Jan 3, 2012 
When science becomes civic: Connecting Engaged Universities and Learning Communities, University of California, Davis, September 11 - 12, 2001
The Filter Bubble: Eli Pariser on What the Internet Is Hiding From You
A story about the Semantic Web (Web 3.0) (video)
Vannevar Bush on the new relationship between thinking man and the sum of our knowledge (1945)
George Lakoff on metaphors, explanatory journalism and the ‘Real Rationality’
The Relativity of Truth - a brief résumé, Lapidarium notes

Mar
26th
Mon
permalink

Science historian George Dyson: Unravelling the digital code
      
                                                     George Dyson (Photo: Wired)

"It was not made for those who sell oil or sardines."

— G. W. Leibniz, ca. 1674, on his calculating machine

A universe of self-replicating code

Digital organisms, while not necessarily any more alive than a phone book, are strings of code that replicate and evolve over time. Digital codes are strings of binary digits — bits. Google is a fantastically large number, so large it is almost beyond comprehension, distributed and replicated across all kinds of hosts. When you click on a link, you are replicating the string of code that it links to. Replication of code sequences isn’t life, any more than replication of nucleotide sequences is, but we know that it sometimes leads to life.

Q [Kevin Kelly]: Are we in that digital universe right now, as we talk on the phone?

George Dyson: Sure. You’re recording this conversation using a digital recorder — into an empty matrix of addresses on a microchip that is being filled up at 44 kilobytes per second. That address space full of numbers is the digital universe.

Q: How fast is this universe expanding?

G.D.: Like our own universe at the beginning, it’s more exploding than expanding. We’re all so immersed in it that it’s hard to perceive. Last time I checked, the digital universe was expanding at the rate of five trillion bits per second in storage and two trillion transistors per second on the processing side. (…)

Q: Where is this digital universe heading?

G.D.: This universe is open to the evolution of all kinds of things. It’s cycling faster and faster. Even with Google and YouTube and Facebook, we can’t consume it all. And we aren’t aware what this space is filling up with. From a human perspective, computers are idle 99 per cent of the time. While they’re waiting for us to come up with instructions, computation is happening without us, as computers write instructions for each other. As Turing showed, this space can’t be supervised. As the digital universe expands, so does this wild, undomesticated side.”

— George Dyson interviewed by Kevin Kelly in Science historian George Dyson: Unravelling the digital code, Wired, Mar 5, 2012.

"Just as we later worried about recombinant DNA, what if these things escaped? What would they do to the world? Could this be the end of the world as we know it if these self-replicating numerical creatures got loose?

But, we now live in a world where they did get loose—a world increasingly run by self-replicating strings of code. Everything we love and use today is, in a lot of ways, self-reproducing exactly as Turing, von Neumann, and Barricelli prescribed. It’s a very symbiotic relationship: the same way life found a way to use the self-replicating qualities of these polynucleotide molecules to the great benefit of life as a whole, there’s no reason life won’t use the self-replicating abilities of digital code, and that’s what’s happening. If you look at what people like Craig Venter and the thousand less-known companies are doing, we’re doing exactly that, from the bottom up. (…)

What’s, in a way, missing in today’s world is more biology of the Internet. More people like Nils Barricelli to go out and look at what’s going on, not from a business or what’s legal point of view, but just to observe what’s going on.

Many of these things we read about in the front page of the newspaper every day, about what’s proper or improper, or ethical or unethical, really concern this issue of autonomous self-replicating codes. What happens if you subscribe to a service and then as part of that service, unbeknownst to you, a piece of self-replicating code inhabits your machine, and it goes out and does something else? Who is responsible for that? And we’re in an increasingly gray zone as to where that’s going. (…)

Why is Apple one of the world’s most valuable companies? It’s not only because their machines are so beautifully designed, which is great and wonderful, but because those machines represent a closed numerical system. And they’re making great strides in expanding that system. It’s no longer at all odd to have a Mac laptop. It’s almost the normal thing.

But I’d like to take this to a different level, if I can change the subject… Ten or 20 years ago I was preaching that we should look at digital code as biologists: the Darwin Among the Machines stuff. People thought that was crazy, and now it’s firmly the accepted metaphor for what’s going on. And Kevin Kelly quoted me in Wired, he asked me for my last word on what companies should do about this. And I said, “Well, they should hire more biologists.”

But what we’re missing now, on another level, is not just biology, but cosmology. People treat the digital universe as some sort of metaphor, just a cute word for all these products. The universe of Apple, the universe of Google, the universe of Facebook, that these collectively constitute the digital universe, and we can only see it in human terms and what does this do for us?

We’re missing a tremendous opportunity. We’re asleep at the switch because it’s not a metaphor. In 1945 we actually did create a new universe. This is a universe of numbers with a life of their own, that we only see in terms of what those numbers can do for us. Can they record this interview? Can they play our music? Can they order our books on Amazon? If you cross the mirror in the other direction, there really is a universe of self-reproducing digital code. When I last checked, it was growing by five trillion bits per second. And that’s not just a metaphor for something else. It actually is. It’s a physical reality.

We’re still here at the big bang of this thing, and we’re not studying it enough. Who’s the cosmologist really looking at this in terms of what it might become in 10,000 years? What’s it going to be in 100 years? Here we are at the very beginning and we just may simply not be asking the right questions about what’s going on. Try looking at it from the other side, not from our side as human beings. Scientists are the people who can do that kind of thing. You can look at viruses from the point of view of a virus, not from the point of view of someone getting sick.

Very few people are looking at this digital universe in an objective way. Danny Hillis is one of the few people who is. His comment, made exactly 30 years ago in 1982, was that "memory locations are just wires turned sideways in time". That’s just so profound. That should be engraved on the wall. Because we don’t realize that there is this very different universe that does not have the same physics as our universe. It’s completely different physics. Yet, from the perspective of that universe, there is physics, and we have almost no physicists looking at it, as to what it’s like. And if we want to understand the sort of organisms that would evolve in that totally different universe, you have to understand the physics of the world in which they are in.  It’s like looking for life on another planet. Danny has that perspective. Most people say just, “well, a wire is a wire. It’s not a memory location turned sideways in time.” You have to have that sort of relativistic view of things.

We are still so close to the beginning of this explosion that we are still immersed in the initial fireball. Yet, in that short period of time, for instance, it was not long ago that to transfer money electronically you had to fill out paper forms on both ends and then wait a day for your money to be transferred. And, in a very few years, it’s a dozen years or so, most of the money in the world is moving electronically all the time.

The best example of this is what we call the flash crash of May 6th, two years ago, when suddenly, the whole system started behaving unpredictably. Large amounts of money were lost in milliseconds, and then the money came back, and we quietly (although the SEC held an investigation) swept it under the rug and just said, “well, it recovered. Things are okay.” But nobody knows what happened, or most of us don’t know.

There was a great Dutch documentary—Money and Speed: Inside the Black Box—where they spoke to someone named Eric Scott Hunsader who actually had captured the data on a much finer time scale, and there was all sorts of very interesting stuff going on. But it’s happening so quickly that it’s below what our normal trading programs are able to observe, they just aren’t accounting for those very fast things. And this could be happening all around us—not just in the world of finance. We would not necessarily even perceive it, that there’s a whole world of communication that’s not human communication. It’s machines communicating with machines. And they may be communicating money, or information that has other meaning—but if it is money, we eventually notice it. It’s just the small warm pond sitting there waiting for the spark.

It’s an unbelievably interesting time to be a digital biologist or a digital physicist, or a digital chemist. A good metaphor is chemistry. We’re starting to address code by template, rather than by numerical location—the way biological molecules do.

We’re living in a completely different world. The flash crash was an example: you could have gone out for a cup of coffee and missed the whole thing, and come back and your company lost a billion dollars and got back 999 million, while you were taking your lunch break. It just happened so fast, and it spread so quickly.

So, yes, the fear scenario is there, that some malevolent digital virus could bring down the financial system. But on the other hand, the miracle of this flash crash was not that it happened, but that it recovered so quickly. Yet, in those milliseconds, somebody made off with a lot of money. We still don’t know who that was, and maybe we don’t want to know.

The reason we’re here today (surrounded by this expanding digital universe) is because in 1936, or 1935, this oddball 23-year-old undergraduate student, Alan Turing, developed this theoretical framework to understand a problem in mathematical logic, and the way he solved that problem turned out to establish the model for all this computation. And I believe we wold have arrived here, sooner or later, without Alan Turing or John von Neumann, but it was Turing who developed the one-dimensional model, and von Neumann who developed the two-dimensional implementation, for this increasingly three-dimensional digital universe in which everything we do is immersed. And so, the next breakthrough in understanding will also I think come from some oddball. It won’t be one of our great, known scientists. It’ll be some 22-year-old kid somewhere who makes more sense of this.

But, we’re going back to biology, and of course, it’s impossible not to talk about money, and all these other ways that this impacts our life as human beings. What I was trying to say is that this digital universe really is so different that the physics itself is different. If you want to understand what types of life-like or self-reproducing forms would develop in a universe like that, you actually want to look at the sort of physics and chemistry of how that universe is completely different from ours. An example is how not only its time scale but how time operates is completely different, so that things can be going on in that world in microseconds that suddenly have a real effect on ours.

Again, money is a very good example, because money really is a sort of a gentlemen’s agreement to agree on where the money is at a given time. Banks decide, well, this money is here today and it’s there tomorrow. And when it’s being moved around in microseconds, you can have a collapse, where suddenly you hit the bell and you don’t know where the money is. And then everybody’s saying, “Where’s the money? What happened to it?” And I think that’s what happened. And there are other recent cases where it looks like a huge amount of money just suddenly disappeared, because we lost the common agreement on where it is at an exact point in time. We can’t account for those time periods as accurately as the computers can.

One number that’s interesting, and easy to remember, was in the year 1953, there were 53 kilobytes of high-speed memory on planet earth. This is random access high-speed memory. Now you can buy those 53 kilobytes for an immeasurably small, thousandth of one cent or something. If you draw the graph, it’s a very nice, clean graph. That’s sort of Moore’s Law; that it’s doubling. It has a doubling time that’s surprisingly short, and no end in sight, no matter what the technology does. We’re doubling the number of bits in a extraordinarily short time.

And we have never seen that. Or I mean, we have seen numbers like that, in epidemics or chain reactions, and there’s no question it’s a very interesting phenomenon. But still, it’s very hard not to just look at it from our point of view. What does it mean to us? What does it mean to my investments? What does it mean to my ability to have all the music I want on my iPhone? That kind of thing. But there’s something else going on. We’re seeing a fraction of one percent of it, and there’s this other 99.99 percent that people just aren’t looking at.

The beginning of this was driven by two problems. The problem of nuclear weapons design, and the problem of code breaking were the two drivers of the dawn of this computational universe. There were others, but those were the main ones.

What’s the driver today? You want one word? It’s advertising. And, you may think advertising is very trivial, and of no real importance, but I think it’s the driver. If you look at what most of these codes are doing, they’re trying to get the audience, trying to deliver the audience. The money is flowing as advertising.

And it is interesting that Samuel Butler imagined all this in 1863, and then in his book Erewhon. And then 1901, before he died, he wrote a draft for “Erewhon Revisited.” In there, he called out advertising, saying that advertising would be the driving force of these machines evolving and taking over the world. Even then at the close of 19th century England, he saw advertising as the way we would grant power to the machines.

If you had to say what’s the most powerful algorithm set loose on planet earth right now? Originally, yes, it was the Monte Carlo code for doing neutron calculations. Now it’s probably the AdWords algorithm. And the two are related: if you look at the way AdWords works, it is a Monte Carlo process. It’s a sort of statistical sampling of the entire search space, and a monetizing of it, which as we know, is a brilliant piece of work. And that’s not to diminish all the other great codes out there.

We live in a world where we measure numbers of computers in billions, and numbers of what we call servers, which are the equivalent of in the old days, of what would be called mainframes. Those are in the millions, hundreds of millions.

Two of the pioneers of this—to single out only two pioneers—were John Von Neumann and Alan Turing. If they were here today Turing would be 100. Von Neumann would be 109. I think they would understand what’s going on immediately—it would take them a few minutes, if not a day, to figure out, to understand what was going on. And, they both died working on biology, and I think they would be immediately fascinated by the way biological code and digital code are now intertwined. Von Neumann’s consuming passion at the end was self-reproducing automata. And Alan Turing was interested in the question of how molecules could self-organize to produce organisms.

They would be, on the other hand, astonished that we’re still running their machines, that we don’t have different computers. We’re still just running your straight Von Neumann/Turing machine with no real modification. So they might not find our computers all that interesting, but they would be diving into the architecture of the Internet, and looking at it.

In both cases, they would be amazed by the direct connection between the code running on computers and the code running in biology—that all these biotech companies are directly reading and writing nucleotide sequences in and out of electronic memory, with almost no human intervention. That’s more or less completely mechanized now, so there’s direct translation, and once you translate to nucleotides, it’s a small step, a difficult step, but, an inevitable step to translate directly to proteins. And that’s Craig Venter’s world, and it’s a very, very different world when we get there.

The question of how and when humans are going to expand into the universe, the space travel question, is, in my view, almost rendered obsolete by this growth of a digitally-coded biology, because those digital organisms—maybe they don’t exist now, but as long as the system keeps going, they’re inevitable—can travel at the speed of light. They can propagate. They’re going to be so immeasurably far ahead that maybe humans will be dragged along with it.

But while our digital footprint is propagating at the speed of light, we’re having very big trouble even getting to the eleven kilometers per second it takes to get into lower earth orbit. The digital world is clearly winning on that front. And that’s for the distant future. But it changes the game of launching things, if you no longer have to launch physical objects, in order to transmit life.”

George Dyson, author and historian of technology whose publications broadly cover the evolution of technology in relation to the physical environment and the direction of society, A universe of self-replicating code, Edge, Mar 26, 2012.

See also:

Jameson Dungan on information and synthetic biology
Vlatko Vedral: Decoding Reality: the universe as quantum information
Rethinking “Out of Africa: A Conversation with Christopher Stringer (2011)
A Short Course In Synthetic Genomics, The Edge Master Class with George Church & Craig Venter (2009)
Eat Me Before I Eat You! A New Foe For Bad Bugs: A Conversation with Kary Mullis (2010)
Mapping The Neanderthal Genome. A Conversation with Svante Pääbo (2009)
Engineering Biology”: A Conversation with Drew Endy (2008)
☞ “Life: A Gene-Centric View A Conversation in Munich with Craig Venter & Raichard Dawkins (2008)
Ants Have Algorithms: A Talk with Ian Couzin (2008)
Life: What A Concept, The Edge Seminar, Freeman Dyson, J. Craig Venter, George Church, Dimitar Sasselov, Seth Lloyd, Robert Shapiro (2007)
Code II J. Doyne Farmer v. Charles Simonyi (1998)
Jason Silva on singularity, synthetic biology and a desire to transcend human boundaries

Mar
21st
Wed
permalink

Richard Doyle on Creativity, evolution of mind and the rhetorical membrane between humans and an informational universe

              

Q [Jason Silva]: The Jesuit Priest and scientist Pierre Teilhard de Chardin spoke of the Noosphere very early on. A profile in WIRED Magazine article said, 

"Teilhard imagined a stage of evolution characterized by a complex membrane of information enveloping the globe and fueled by human consciousness”.. Teilhard saw the Net coming more than half a century before it arrived. He believed this vast thinking membrane would ultimately coalesce into “the living unity of a single tissue” containing our collective thoughts and experiences."  Teilhard wrote, "The living world is constituted by consciousness clothed in flesh and bone.

He argued that the primary vehicle for increasing complexity consciousness among living organisms was the nervous system. The informational wiring of a being, he argued - whether of neurons or electronics - gives birth to consciousness. As the diversification of nervous connections increases, evolution is led toward greater consciousness… thoughts?

Richard Doyle: Yes, he also called it this process of the evolution of consciousness “Omega Point”. The noosphere imagined here relied on a change in our relationship to  consciousness as much to any technological change and was part of evolution’s epic quest for self awareness. Here Teilhard is in accord with Julian Huxley (Aldous’ brother, a biologist) and Carl Sagan when they observed that “we are a way for the cosmos to know itself.” Sri Aurobindo’s The Life Divine traces out this evolution of consciousness as well through the greek and Sanskrit traditions as well as Darwinism and (relatively) modern philosophy. All are describing evolution’s slow and dynamic quest towards understanding itself.

         

I honestly think we are still grappling with the fact that our minds are distributed across a network by technology, and have been in a feedback loop between our brains and technologies at least since the invention of writing. As each new “mutation” occurs in the history of evolution of information technology, the very character of our minds shifts. McLuhan's Understanding Media is instructive here as well (he parsed it as the Global Village), and of course McLuhan was the bard who advised Leary on "Tune in, Turn on, Drop Out" and very influential on Terence McKenna.

One difference between now and Plato’s time is the infoquake through which we are all living. This radical increase in quantity no doubt has qualitative effects - it changes what it feels like to think and remember. Plato was working through the effect of one new information technology – writing – whereas today we “upgrade” every six months or so…Teilhard observes the correlative of this evolutionary increase in information - and the sudden thresholds it crosses - in the evolution of complexity and nervous systemsThe noosphere is a way of helping us deal with this “phase transition” of consciousness that may well be akin to the phase transition between liquid water and water vapor - a change in degree that effects a change in kind.

Darwin’s Pharmacy suggests that ecodelics were precisely such a mutation in information technology that increased sexually selective fitness through the capacity to process greater amounts of information, and that they are “extraordinarily sensitive to initial rhetorical traditions.” What this means is that because ecodelic experiences are so sensitive to the context in which we experience them, they can help make us aware of the effect of language and music etc on our consciousness, and thereby offer an awareness of our ability to effect our own consciousness through our linguistic and creative choices. This can be helpful when trying to browse the infoquake. Many other practices do so as well - meditation is the most well established practice for noticing the effects we can have on our own consciousness, and Sufi dervishes demonstrate this same outcome for dancing. I do the same on my bicycle, riding up a hill and chanting.

One problem I have with much of the discourse of “memes" is that it is often highly reductionistic - it often forgets that ideas have an ecology too, they must be "cultured." Here I would argue that drawing on Lawrence Lessig's work on the commons, the “brain” is a necessary but insufficient “spawning” ground for ideas that becomes actual. The commons is the spawning ground of ideas; brains are pretty obviously social as well as individual. Harvard biologist Richard Lewontin notes that there is no such thing as “self replicating” molecules, since they always require a context to be replicated. This problem goes back at last to computer scientist John Von Neumann's 1947 paper on Self reproducing automata.

I think Terence McKenna described the condition as "language is loose on planet three", and its modern version probably occurs first in the work of writer William S. Burroughs, whose notion of the "word virus" predates the "meme" by at least a decade. Then again this notion of "ideas are real" goes back to cosmologies that begin with the priority of consciousness over matter, as in "In the beginning was the word, and the word was god, and the word was with god." So even Burroughs could get a late pass for his idea. (…)

Q: Richard Dawkin's definition of a meme is quite powerful: 

“I think that a new kind of replicator has recently emerged on this very planet, […] already achieving evolutionary change at a rate that leaves the old gene panting far behind.” [the replicator is] human culture; the vector of transmission is language, and the spawning ground is the brain.”  

This notion that the ”the vector of transmission is language" is very compelling.. It seems to suggest that just as in biological evolution the vector of transmission has been the DNA molecule, in the noosphere, the next stage up, it is LANGUAGE that has become a major player in the transfer of information towards achieving evolutionary change.. Kind of affects how you think about the phrase “words have power”. This insight reminds me of a quote that describes, in words, the subjective ecstasy that a mind feels when upon having a transcendent realization that feels as if it advances evolution: 

"A universe of possibilities,

Grey infused by color,

The invisible revealed,

The mundane blown away

by awe” 

Is this what you mean by ‘the ecstasy of language’?

Richard Doyle: Above, I noted that ecodelics can make us aware of the feedback loops between our creative choices – should I eat mushrooms in a box? - Should I eat them with a fox? - and our consciousness. In other words, they can make us aware of the tremendous freedom we have in creating our own experience. Leary called this “internal freedom.” Becoming aware of the practically infinite choices we have to compose our lives, including the words we use to map them, can be overwhelming – we feel in these instances the “vertigo of freedom.” What to do? In ecodelic experience we can perceive the power of our maps. That moment in which we can learn to abide the tremendous creative choice we have, and take responsibility for it, is what I mean by the “ecstasy of language.” 

I would point out, though, that for those words you quote to do their work, they have to be read. The language does not do it "on its own" but as a result of the highly focused attention of readers. This may seem trivial but it is often left out, with some serious consequences. And “reading” can mean “follow up with interpretation”. I cracked up when I googled those lines above and found them in a corporate blog about TED, for example. Who knew that neo-romantic poetry was the emerging interface of the global corporate noosphere? (…)

Q: Buckminster Fuller described humans as "pattern integrities", Ray Kurzweil says we are "patterns of information". James Gleick's new book, The Information, says that “information may be more primary than matter”..  what do you make of this? And if we indeed are complex patterns, how can we hack the limitations of biology and entropy to preserve our pattern integrity indefinitely? 

Richard Doyle: First: It is important to remember that the history of the concept and tools of “information” is full of blindspots – we seem to be constantly tempted to underestimate the complexity of any given system needed to make any bit of information meaningful or useful. Caitlin, Kolmogorov Stephan Wolfram and John Von Neumann each came independently to the conclusion that information is only meaningful when it is “run” - you can’t predict the outcome of even many trivial programs without running the program. So to say that “information may be more primary than matter” we have to remember that “information” does not mean “free from constraints.” Thermodynamics – including entropy – remains.

Molecular and informatic reductionism – the view that you can best understand the nature of a biological system by cutting it up into the most significant bits, e.g. DNA – is a powerful model that enables us to do things with biological systems that we never could before. Artist Eduardo Kac collaborated with a French scientist to make a bioluminescent bunny. That’s new! But sometimes it is so powerful that we forget its limitations. The history of the human genome project illustrates this well. AND the human genome is incredibly interesting. It’s just not the immortality hack many thought it would be.

In this sense biology is not a limitation to be “transcended” (Kurzweil), but a medium of exploration whose constraints are interesting and sublime. On this scale of ecosystems, “death” is not a “limitation” but an attribute of a highly dynamic interactive system. Death is an attribute of life. Viewing biology as a “limitation” may not be the best way to become healthy and thriving beings.

Now, that said, looking at our characteristics as “patterns of information” can be immensely powerful, and I work with it at the level of consciousness as well as life. Thinking of ourselves as “dynamic patterns of multiply layered and interconnected self transforming information” is just as accurate of a description of human beings as “meaningless noisy monkeys who think they see god”, and is likely to have much better effects. A nice emphasis on this “pattern” rather than the bits that make it up can be found in Carl Sagan’s “The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.”

Q: Richard Dawkins declared in 1986 that ”What lies at the heart of every living thing is not a fire, not warm breath, not a ‘spark of life.’ It is information, words, instructions, […] If you want to understand life,” Dawkins wrote, “don’t think about vibrant, throbbing gels and oozes, think about information technology.” How would you explain the relationship between information technology and the reality of the physical world?

Richard Doyle: Again, information is indeed physical. We can treat a sequence of information as abstraction and take it out of its context – like a quotation or a jellyfish gene spliced into a rabbit to enable it to glow. We can compress information, dwindling the resources it takes to store or process it. But “Information, words, instructions” all require physical instantiation to even be “information, words, instructions.” Researcher Rolf Landauer showed back in the 1960s that even erasure is physical. So I actually think throbbing gels and oozes and slime mold and bacteria eating away at the garbage gyre are very important when we wish to “understand” life. I actually think Dawkins gets it wrong here – he is talking about “modeling” life, not “understanding” it. Erwin Schrödinger, the originator of the idea of the genetic code and therefore the beginning of the “informatic” tradition of biology that Dawkins speaks in here, knew this very well and insisted on the importance of first person experience for understanding.

So while I find these metaphors useful, that is exactly what they are: metaphors. There is a very long history to the attempt to model words and action together: Again, John 1:1 is closer to Dawkin’s position here than he may be comfortable with: “In the Beginning was the word, and the word was god, and the word was with god” is a way of working with this capacity of language to bring phenomena into being. It is really only because we habitually think of language as “mere words” that we continually forget that they are a manifestation of a physical system and that they have very actual effects not limited to the physics of their utterance – the words “I love you” can have an effect much greater than the amount of energy necessary to utter them. Our experiences are highly tuneable by the language we use to describe them.

Q: Talk about the mycelial archetype. Author Paul Stamet compares the pattern of the mushroom mycelium with the overlapping information-sharing systems that comprise the Internet, with the networked neurons in the brain, and with a computer model of dark matter in the universe. All share this densely intertwingled filamental structure…. what is the connection? what is the pattern that connects here? 

Richard Doyle: First things first: Paul Stamets is a genius and we should listen to his world view carefully and learn from it. Along with Lynn Margulis and Dorion Sagan, whose work I borrow from extensively in Darwin’s Pharmacy (as well as many others), Stamets is asking us to contemplate and act on the massive interconnection between all forms of life. This is a shift in worldview that is comparable to the Copernican shift from a geocentric cosmos – it is a shift toward interconnection and consciousness of interconnection. And I like how you weave in Gregory Bateson's phrase “the pattern that connects” here, because Bateson (whose father, William Bateson, was one of the founders of modern genetics) continuously pointed toward the need to develop ways of perceiving the whole. The “mycelial archetype”, as you call it, is a reliable and rather exciting way to recall the whole: What we call “mushrooms” are really the fruiting bodies of an extensive network of cross connection.

That fuzz growing in an open can of tomato paste in your fridge – mycelium. So even opening our refrigerator – should we be lucky enough to have one, with food in it - can remind us that what we take to be reality is is an actuality only appearance – a sliver, albeit a significant one for our world, of the whole. That fuzz can remind us that (1) appearance and reality or not the same thing at all and (2) beyond appearance there is a massive interconnection in unity. This can help remind us who and what we really are. 

With the word ‘archetype”, you of course invoke the psychologist Carl Jung who saw archetypes as templates for understanding, ways of organizing our story of the world. There are many archetypes – the Hero, the Mother, the Trickster, the sage. They are very powerful because they help stitch together what can seem to be a chaotic world – that is both their strength and their weakness. It is a weakness because most of the time we are operating within an archetype and we don’t even know it, and we don’t know therefore that we can change our archetype

By experimenting with a different archetype – imagining, for example, the world through the lens of a 2400 year old organism that is mostly invisible to a very short lived and recent species becoming aware of its creative responsibility in altering the planet – is incredibly powerful, and in Darwin’s Pharmacy I am trying to offer a way to experiment with the idea of plant planet as well as “mycelium” archetype. One powerful aspect of the treating the mycelium as our archetype as humanity is that it is “distributed” - it does not operate via a center of control but through cross connection “distributed” over a space.

Anything we can do to remember both our individuation and our interconnection is timely – we experience the world as individuals, and our task is to discover our nature within the larger scale reality of our dense ecological interconnection. In the book I point to the Upanishad’s “Tat Tvam Asi as a way of comprehending how we can both be totally individual and an aspect of the whole.

Q: You’ve talked about the ecstasy of language and the role of rhetoric in shaping reality.. These notions echo some of Terence McKenna's ideas about language… He calls language an “ecstatic activity of signification”… and says that for the “inspired one, it is almost as if existence is uttering itself through him”… Can you expand on this? How does language create reality?? 

Richard Doyle: It’s incredibly fun and insightful to echo Terence McKenna. He’s really in this shamanic bard tradition that goes all the back to Empedocles at least, and is distributed widely across the planet. He’s got a bit of Whitman in him with his affirmation of the erotic aspects of enlightenment. He was Emerson speaking to a Lyceum crowd remixed through rave culture. Leary and McKenna were resonating with the irish bard archetype. And Terrence was echoing Henry Munn, who was echoing Maria Sabina, whose chants and poetics can make her seem like Echo herself – a mythological story teller and poet (literally “sound”) who so transfixes Hera (Zeus’s wife) that Zeus can consort with nymphs. Everywhere we look there are allegories of sexual selection’s role in the evolution of poetic & shamanic language! 

And Terrence embodies the spirit of eloquence, helping translate our new technological realities (e.g. virtual reality, a fractal view of nature, radical ecology) and the states of mind that were likely to accompany them. Merlin Donald writes of the effects of “external symbolic storage” on human culture – as a onetime student of McLuhan’s, Donald was following up on Plato’s insights I mentioned above that writing changes how we think, and therefore, who we are

Human culture is going through a fantastic “reality crisis” wherein we discover the creative role we play in nature. Our role in global climate change – not to mention our role in dwindling biodiversity – is the “shadow” side of our increasing awareness that humans have a radical creative responsibility for their individual and collective lives. And our lives are inseparable from the ecosystems with which we are enmeshed. THAT is reality. To the extent that we can gather and focus our attention on retuning our relation towards ecosystems in crisis, language can indeed shape reality. We’ll get the future we imagine, not necessarily the one we deserve.

Q: Robert Anton Wilson spoke about “reality tunnels”…. These ‘constructs’ can limit our perspectives and perception of reality, they can trap us, belittle us, enslave us, make us miserable or set us free… How can we hack our reality tunnel?  Is it possible to use rhetoric and/or psychedelics to “reprogram” our reality tunnel? 

Richard Doyle: We do nothing but program and reprogram our reality tunnelsSeriously, the Japanese reactor crisis follows on the BP oil spill as a reminder that we are deeply interconnected on the level of infrastructure – technology is now planetary in scale, so what happens here effects somebody, sometimes Everybody, there. These infrastructures – our food sheds, our energy grid, our global media - run on networks, protocols, global standards, agreements: language, software, images, databases and their mycelial networks.

The historian Michel Foucault called these “discourses”, but we need to connect these discourses to the nonhuman networks with which they are enmeshed, and globalization has been in part about connecting discourses to each other across the planet. Ebola ends up in Virginia, Starbucks in Hong Kong. This has been true for a long time, of course – Mutual Assured Destruction was planetary in scale and required a communication and control structure linking, for example, a Trident submarine under the arctic ice sheet – remember that? - to a putatively civilian political structure Eisenhower rightly warned us about: the military industrial complex. The moon missions illustrate this principle as well – we remember what was said as much as what else was done, and what was said, for a while, seem to induce a sense of truly radical and planetary possibility.

So if we think of words as a description of reality rather than part of the infrastructure of reality, we miss out on the way different linguistic patterns act as catalysts for different realities. I call these “rhetorical softwares”. In my first two books, before I really knew about Wilson’s work or had worked through Korzybski with any intensity, I called these “rhetorical softwares.”

Now the first layer of our reality tunnel is our implicit sense of self – this is the only empirical reality any of us experiences – what we subjectively experience. RAW was a brilliant analyst of the ways experience is shaped by the language we use to describe it. One of my favorite examples from his work is his observation that in English, “reality” is a noun, so we start to treat it as a “thing”, when in fact reality, this cosmos, is also quite well mapped as an action – a dynamic unfolding for 13.7 billion years. That is a pretty big mismatch between language and reality, and can give us a sense that reality is inert, dead, lifeless, “concrete”, and thus not subject to change. By experimenting with what Wilson, following scientist John Lilly, called “metaprograms”, we can change the maps that shape the reality we inhabit. (…)

Q: The film Inception explored the notion that our inner world can be a vivid, experiential dimension, and that we can hack it, and change our reality… what do you make of this? 

Richard Doyle: The whole contemplative tradition insists on this dynamic nature of consciousness. “Inner” and “outer” are models for aspects of reality – words that map the world only imperfectly. Our “inner world” - subjective experience – is all we ever experience, so if we change it obviously we will see a change in what we label “external” reality it is of course part of and not separable from. One of the maps we should experiment with, in my view, is this “inner” and “outer” one – this is why one of my aliases is “mobius.” A mobius strip helps makes clear that “inside” and “outside” are… labels. As you run your finger along a mobius strip, the “inside” becomes “outside” and the “outside” becomes “inside.”.

Q: Can we give put inceptions out into the world?

Richard Doyle: We do nothing but! And, it is crucial to add, so too does the rest of our ecosystem. Bacteria engage in quorum sensing, begin to glow, and induce other bacteria to glow – this puts their inceptions into the world. Thanks to the work of scientists like Anthony Trewavas, we know that plants engage in signaling behavior between and across species and even kingdoms: orchids “throw” images of female wasps into the world, attracting male wasps, root cells map the best path through the soil. The whole blooming confusion of life is signaling, mapping and informing itself into the world. The etymology of “inception” is “to begin, take in hand” - our models and maps are like imagined handholds on a dynamic reality.

Q: What is the relationship between psychedelics and information technology? How are ipods, computers and the internet related to LSD? 

Richard Doyle: This book is part of a trilogy on the history of information in the life sciences. So, first: psychedelics and biology. It turns out that molecular biology and psychedelics were important contexts for each other. I first started noticing this when I found that many people who had taken LSD were talking about their experiences in the language of molecular biology – accessing their DNA and so forth. When I learned that psychedelic experience was very sensitive to “set and setting” - the mindset and context of their use - I wanted to find out how this language of molecular biology was effecting people’s experiences of the compounds. In other words, how did the language affect something supposedly caused by chemistry? 

Tracking the language through thousands of pages, I found that both the discourse of psychedelics and molecular biology were part of the “informatic vision” that was restructuring the life sciences as well as the world, and found common patterns of language in the work of Timothy Leary (the Harvard psychologist) and Francis Crick (who won the Nobel prize with James Watson and Maurice Wilkins for determining the structure of DNA in 1954), so in 2002 I published an article describing the common “language of information” spoken by Leary and Crick. I had no idea that Crick had apparently been using LSD when he was figuring out the structure of DNA. Yes, that blew my mind when it came out in 2004. I feel like I read that between the lines of Crick’s papers, which gave me confidence to write the rest of the book about the feedback between psychedelics and the world we inhabit.

The paper did hone in on the role that LSD played in the invention of PCR (polymerase chain reaction) – Kary Mullis, who won the Nobel prize for the invention of this method of making copies of a sequence of DNA, talked openly of the role that LSD played in the process of invention. Chapter 4 of the book looks to use of LSD in “creative problem solving” studies of the 1960s. These studies – hard to imagine now, 39 years into the War on Drugs, but we can Change the Archetype - suggest that used with care, psychedelics can be part of effective training in remembering how to discern the difference between words and things, maps and territories.

In short, this research suggested that psychedelics were useful for seeing the limitations of words as well as their power, perhaps occasioned by the experience of the linguistic feedback loops between language and psychedelic experiences that themselves could never be satisfactorily described in language. I argue that Mullis had a different conception of information than mainstream molecular biology – a pragmatic concept steeped in what you can do with words rather than in what they mean. Mullis seems to have thought of information as “algorithms” - recipes of code, while the mainsteam view was thinking of it as implicitly semantically, as “words with meaning.”

Ipods, Internet, etc: Well, in some cases there are direct connections. Perhaps Bill Joy said it best when he said that there was a reason that LSD and Unix were both from BerkeleyWhat the Doormouse Said by John Markoff came out after I wrote my first paper on Mullis and I was working on the book, and it was really confirmation of a lot of what I seeing indicated by my conceptual model of what is going on, which is as follows: Sexual selection is a good way to model the evolution of information technology. It yields bioluminescence – the most common communication strategy on the planet – chirping insects, singing birds, Peacocks fanning their feathers, singing whales, speaking humans, and humans with internet access. These are all techniques of information production, transformation or evaluation. I am persuaded by Geoffrey Miller’s update of Charles Darwin’s argument that language and mind are sexually selected traits, selected not simply for survival or even the representation of fitness, but for their sexiness. Leary: “Intelligence is the greatest aphrodisiac.”

I offer the hypothesis that psychedelics enter the human toolkit as “eloquence adjuncts” - tools and techniques for increasing the efficacy of language to seemingly create reality – different patterns of language ( and other attributes of set and setting) literally causes different experiences. The informatic revolution is about applying this ability to create reality with different “codes” to the machine interface. Perhaps this is one of the reason people like Mitch Kapor (a pioneer of computer spreadsheets), Stewart Brand (founder of a pre-internet computer commons known as the Well) and Bob Wallace (one of the original Microsoft seven and an early proponent of shareware), Mark Pesce were or are all psychonauts.

Q: Cyborg Anthropologist Amber Case has written about Techno-social wormholes.. the instant compression of time and space created every time we make a telephone call…  What do you make of this compression of time and space made possible by the engineering “magic” of technology? 

Richard Doyle:  It’s funny the role that the telephone call plays as an example in the history of our attempts to model the effects of information technologies. William Gibson famously defined cyberspace as the place where a telephone call takes place. (Gibson’s coinage of the term “cyberspace” is a good example of an “inception”) Avital Ronell wrote about Nietzsche’s telephone call to the beyond and interprets the history of philosophy according to a “telephonic logic”. When I was a child my father once threw our telephone into the atlantic ocean – that was what he made of the magic of that technology, at least in one moment of anger. This was back in the day when Bell owned your phone and there was some explaining to do. This magic of compression has other effects – my dad got phone calls all day at work, so when was at home he wanted to turn it off. The only way he knew to turn it off was to rip it out of the wall – there was no modular plug, just a wire into the wall - and throw it into the ocean.

So there is more than compression going on here: Deleuze and Guattari, along with the computer scientist Pierre Levy after them, call it “deterritorialization”. The differences between “here” and “there” are being constantly renegotiated as our technologies of interaction develop. Globalization is the collective effect of these deterritorializations and reterritorializations at any given moment.

And the wormhole example is instructive: the forces that enable such collapse of space and time as the possibility of time travel would likely tear us to smithereens. The tensions and torsions of this deterritorialization at part of what is at play in the Wikileaks revolutions, this compression of time and space offers promise for distributed governance as well as turbulence. Time travel through wormholes, by the way, is another example of an inception – Carl Sagan was looking for a reasonable way to transport his fictional aliens in Contact, called Cal Tech physicist Skip Thorne for help, and Thorne came up with the idea.

Q: The film Vanilla Sky explored the notion of a scientifically-induced lucid dream where we can live forever and our world is built out of our memories and ”sculpted moment to moment and lived with the romantic abandon of a summer day or the feeling of a great movie or a pop song you always loved”. Can we sculpt ‘real’ reality as if it were a “lucid dream”

Richard Doyle:Some traditions model reality as a lucid dream. The Diamond Sutra tells us that to be enlightened we must view reality as “a phantom, a dew drop, a bubble.”  This does not mean, of course, that reality does not exist, only that appearance has no more persistence than a dream and that what we call “reality” is our map of reality. When we wake up, the dream that had been so compelling is seen to be what it was: a dream, nothing more or less. Dreams do not lack reality – they are real patterns of information. They just aren’t what we usually think they are. Ditto for “ordinary” reality. Lucid dreaming has been practiced by multiple traditions for a long time – we can no doubt learn new ways of doing so. In the meantime, by recognizing and acting according to the practice of looking beyond appearances, we can find perhaps a smidgeon more creative freedom to manifest our intentions in reality.

Q: Paola Antonelli, design curator of MoMa, has written about Existenz Maximum, the ability of portable music devices like the ipod to create”customized realities”, imposing a soundtrack on the movie of our own life. This sounds empowering and godlike- can you expand on this notion? How is technology helping us design every aspect of both our external reality as well as our internal, psychological reality?

Richard Doyle: Well, the Upanishads and the Book of Luke both suggest that we “get our inner Creator on”, the former by suggesting that “Tat Tvam Asi” - there is an aspect of you that is connected to Everything, and the latter by recommending that we look not here or there for the Kingdom of God, but “within.” So if this sounds “god like”, it is part of a long and persistent tradition. I personally find the phrase “customized realities” redundant given the role of our always unique programs and metaprograms. So what we need to focus on his: to which aspect of ourselves do we wish to give this creative power? These customized realities could be enpowering and god like for corporations that own the material, or they could enpower our planetary aspect that unites all of us, and everything in between. It is, as always, the challenge of the magus and the artist to decide how we want to customize reality once we know that we can.

Q: The Imaginary Foundation says that "to understand is to perceive patterns"… Some advocates of psychedelic therapy have said that certain chemicals heighten our perception of patterns..They help! us “see more”.  What exactly are they helping us understand? 

Richard Doyle: Understanding! One of the interesting bits of knowledge that I found in my research was some evidence that psychonauts scored better on the Witkin Embedded Figure test, a putative measure of a human subject’s ability to “distinguish a simple geometrical figure embedded in a complex colored figure.” When we perceive the part within the whole, we can suddenly get context, understanding.

Q: An article pointing to the use of psychedelics as catalysts for breakthrough innovation in silicon valley says that users …

"employ these cognitive catalysts, de-condition their thinking periodically and come up with the really big connectivity ideas arrived at wholly outside the linear steps of argument. These are the gestalt-perceiving, asterism-forming “aha’s!” that connect the dots and light up the sky with a new archetypal pattern."

This seems to echo what other intellectuals have been saying for ages.  You referred to Cannabis as “an assassin of referentiality, inducing a butterfly effect in thought. Cannabis induces a parataxis wherein sentences resonate together and summon coherence in the bardos between one statement and another.”

Baudelaire also wrote about cannabis as inducing an artificial paradise of thought:  

“…It sometimes happens that people completely unsuited for word-play will improvise an endless string of puns and wholly improbable idea relationships fit to outdo the ablest masters of this preposterous craft. […and eventually]… Every philosophical problem is resolved. Every contradiction is reconciled. Man has surpassed the gods.”

Anthropologist Henry Munn wrote that:

"Intoxicated by the mushrooms, the fluency, the ease, the aptness of expression one becomes capable of are such that one is astounded by the words that issue forth… At times… the words leap to mind, one after another, of themselves without having to be searched for: a phenomenon similar to the automatic dictation of the surrealists except that here the flow of consciousness, rather than being disconnected, tends to be coherent: a rational enunciation of meanings.  The spontaneity they liberate is not only perceptual, but linguistic, the spontaneity of speech, of fervent, lucid discourse, astonishing. […] For the inspired one, it is as if existence were uttering itself through him […]

Can you expand a bit on how certain ecodelics (as well as marijuana) can help us de-condition our thinking, have creative breakthroughs as well as intellectual catharsis? How is it that “intoxication” could, under certain conditions, actually improve our cognition and creativity and contribute to the collective intelligence of the species?

Richard Doyle: I would point, again, to Pahnke's description of ego death. This is by definition an experience when our maps of the world are humbled. In the breakdown of our ordinary worldview - such as when a (now formerly)  secular being such as myself finds himself  feeling unmistakably sacred - we get a glimpse of reality without our usual filters. It is just not possible to use the old maps, so we get even an involuntary glimpse of reality. This is very close to the Buddhist practice of exhausting linguistic reference through chanting or Koans - suddenly we see the world through something besides our verbal mind.

Ramana Maharshi says that in the silence of the ego we perceive reality - reality IS the breakdown of the ego. Aldous Huxley, who was an extraordinarily adroit and eloquent writer with knowledge of increasingly rare breadth and depth, pointed to a quote by William Blake when trying to sum up his experience: the doors of perception were cleansed. This is a humble act, if you think about it: Huxley, faced with the beauty and grandeur of his mescaline experience, offers the equivalent of ‘What he said!”. Huxley also said that psychedelics offered a respite from “the throttling embrace of the self”, suggesting that we see the world without the usual filters of our egoic self. (…)

And if you look carefully at the studies by pioneers such as Myron Stolaroff and Willis Harman that you reference, as I do in the book, you will see that great care was taken to compose the best contexts for their studies. Subjects, for example, were told not to think about personal problems but to focus on their work at hand, and, astonishingly enough, it seems to have worked. These are very sensitive technologies and we really need much more research to explore their best use. This means more than studying their chemical function - it means studying the complex experiences human beings have with them. Step one has to be accepting that ecodelics are and always have been an integral part of human culture for some subset of the population. (…)

Q: Kevin Kelly refers to technological evolution as following the momentum begun at the big bang - he has stated:

"…there is a continuum, a connection back all the way to the Big Bang with these self-organizing systems that make the galaxies, stars, and life, and now is producing technology in the same way. The energies flowing through these things are, interestingly, becoming more and more dense. If you take the amount of energy that flows through one gram per second in a galaxy, it is increased when it goes through a star, and it is actually increased in life…We don’t realize this. We think of the sun as being a hugely immense amount of energy. Yet the amount of energy running through a sunflower per gram per second of the livelihood, is actually greater than in the sun. Actually, it’s so dense that when it’s multiplied out, the sunflower actually has a higher amount of energy flowing through it. "..

Animals have even higher energy usage than the plant, and a jet engine has even higher than an animal. The most energy-dense thing that we know about in the entire universe is the computer chip in your computer. It is sending more energy per gram per second through that than anything we know. In fact, if it was to send it through any faster, it would melt or explode. It is so energy-dense that it is actually at the edge of explosion.”…  

Can you comment on the implications of what he’s saying here?

Richard Doyle: I think maps of “continuity” are crucial and urgently needed. We can model the world as either “discrete” - made up of parts - or “continuous” - composing a whole - to powerful effect. Both are in this sense true. This is not “relativism” but a corollary of that creative freedom to choose our models that seems to be an attribute of consciousness. The mechanistic worldview extracts, separates and reconnects raw materials, labor and energy in ways that produce astonishing order as well as disorder (entropy).

By mapping the world as discrete – such as the difference between one second and another – and uniform – to a clock, there is no difference between one second and another – we have transformed the planet. Consciousness informed by discrete maps of reality has been an actual geological force in a tiny sliver of time. In so doing, we have have transformed the biosphere. So you can see just how actual this relation between consciousness, its maps, and earthly reality is. This is why Vernadsky, a geophysicist, thought we needed a new term for the way consciousness functions as a geological force: noosphere.

These discrete maps of reality are so powerful that we forget that they are maps. Now if the world can be cut up into parts, it is only because it forms a unity. A Sufi author commented that the unity of the world was both the most obvious and obscure fact. It is obvious because our own lives and the world we inhabit can be seen to continue without any experienced interruption – neither the world nor our lives truly stops and starts. This unity can be obscure because in a literal sense we can’t perceive it with our senses – this unity can only be “perceived” by our minds. We are so effective as separate beings that we forget the whole for the part.

The world is more than a collection of parts, and we can quote Carl Sagan: “The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.” Equally beautiful is what Sagan follows up with: “The cosmos is also within us. We are made of star stuff.” Perhaps this is why models such as Kelly’s feel so powerful: reminding ourselves that there is a continuity between the Big Bang and ourselves means we are an aspect of something unfathomably grand, beautiful, complex and unbroken. This is perhaps the “grandeur” Darwin was discussing. And when we experience that grandeur it can help us think and act in aways appropriate to a geological force.

I am not sure about the claims for energy that Kelly is making – I would have to see the context and the source of his data – but I do know that when it comes to thermodynamics, what he is saying rings true. We are dissipative structures far from equilibrium, meaning that we fulfill the laws of thermodynamics. Even though biological systems such as ourselves are incredibly orderly – and we export that order through our maps onto and into the world – we also yield more entropy than our absence. Living systems, according to an emerging paradigm of Stanley Salthe, Rob Swenson, the aforementioned Margulis and Sagan, Eric Schneider, James J. kay and others, maximize entropy, and the universe is seeking to dissipate ever greater amounts of entropy.

Order is a way to dissipate yet more energy. We’re thermodynamic beings, so we are always on the prowl for new ways to dissipate energy as heat and create uncertainty (entropy), and consciousness helps us find ever new ways to do so. (In case you are wondering, Consciousness is the organized effort to model reality that yields ever increasing spirals of uncertainty in Deep Time. But you knew that.) It is perhaps in this sense that, again following Carl Sagan, “ We are a way for the cosmos to know itself.” That is pretty great map of continuity.

What I don’t understand in Kelly’s work, and I need to look at with more attention, is the discontinuity he posits between biology and technology. In my view our maps have made us think of technology as different in kind from biology, but the global mycelial web of fungi suggests otherwise, and our current view of technology seems to intensify this sense of separation even as we get interconnected through technology. I prefer Noosphere to what Kelly calls the Technium because it reminds us of the ways we are biologically interconnected with our technosocial realities. Noosphere sprouts from biosphere.

Q: There is this notion of increasing complexity… Yet in a universe where entropy destroys almost everything, here we are, the cutting edge of evolution, taking the reigns and accelerating this emergent complexity.. Kurzweil says that this makes us “very important”: 

“…It turns out that we are central, after all.  Our ability to create models—virtual realities—in our brains, combined with ou modest-looking thumbs, has been sufficient to usher in another form of evolution: technology. That development enabled the persistence of the accelerating pace that started with biological evolution. It will continue until the entire universe is at our fingertips.”   

What do you think?

Richard Doyle: Well, I think from my remarks already you can see that I agree with Kurzweil here and can only suggest that it is for this very reason that we must be very creative, careful and cunning with our models. Do we model the technologies that we are developing according to the effects they will have on the planetary whole? Only rarely, though this is what we are trying to do at the Penn State Center for Nanofutures, as are lots of people involved in Science, Technology and Society as well as engineering education. When we develop technologies - and that is the way psychedelics arrived in modern culture, as technologies -  we must model their effects not only on the individuals who use them, but on the whole of our ecosystem and planetary society.

If our technological models are based on the premise that this is a dead planet – and most of them very much are, one is called all kinds of names if you suggest otherwise - animist, vitalist, Gaian intelligence agent, names I wear with glee – then we will end up with a asymptotically dead planet. Consciousness will, of course, like the Terminator, “Be Back” should we perish, but let us hope that it learns to experiment better with its maps and learns to notice reality just a little bit more. I am actually an optimist on this front and think that a widespread “aha” moment is occurring where there is a collective recognition of the feedback loops that make up our technological & biological evolution.

Again, I don’t know why Kurzweil seems to think that technological evolution is discontinuous with biological evolution – technology is nested within the network of “wetwares” that make it work, and our wetwares are increasingly interconnected with our technological infrastructure, as the meltdowns in Japan demonstrate along with the dependence of many of us – we who are more bacterial than human by dry weight - upon a network of pharmaceuticals and electricity for continued life. The E. coli outbreak in Europe is another case in point – our biological reality is linked with the technological reality of supply chain management. Technological evolution is biological evolution enabled by the maps of reality forged by consciousness. (…)

Whereas technology for many promised the “disenchantment” of the world –the rationalization of this world of the contemplative spirit as everything became a Machine – here was mystical contemplative experience manifesting itself directly within what sociologist Max Weber called the “iron cage of modernity”, Gaia bubbling up through technological “Babylon.”

Now many contemplatives have sought to share their experiences through writing – pages and pages of it. As we interconnect through information technology, we perhaps have the opportunity to repeat this enchanted contemplative experience of radical interconnection on another scale, and through other means. Just say Yes to the Noosphere!”

Richard Doyle, Professor of English Affiliate Faculty, Information Science and Technology at Pennsylvania State University, in conversation with Jason Silva, Creativity, evolution of mind and the “vertigo of freedom”, Big Think, June 21, 2011. (Illustrations: 1) Randy Mora, Artífices del sonido, 2) Noosphere)

See also:

☞ RoseRose, Google and the Myceliation of Consciousness
Kevin Kelly on Why the Impossible Happens More Often
Luciano Floridi on the future development of the information society
Luciano Floridi on The Digital Revolution as a Fourth Revolution: “P2P does’t mean Pirate to Pirate but Platonist to Platonist”
The Rise of the Conversation Society: information, communication and collaboration
Keen On… James Gleick: Why Cyberspace, As a Mode of Being, Will Never Go Away (TCTV), (video) TechCrunch, Jun 23, 2011
Timothy Leary on cybernetics and a new global culture
Mark Changizi on Humans, Version 3.0.
Cyberspace tag on Lapidarium

Dec
27th
Tue
permalink

'To understand is to perceive patterns'

                  

"Everything we care about lies somewhere in the middle, where pattern and randomness interlace."

James Gleick, The Information: A History, a Theory, a Flood, Pantheon, 2011

"Humans are pattern-seeking story-telling animals, and we are quite adept at telling stories about patterns, whether they exist or not."

Michael Shermer

"The pattern, and it alone, brings into being and causes to pass away and confers purpose, that is to say, value and meaning, on all there is. To understand is to perceive patterns. (…) To make intelligible is to reveal the basic pattern.”

Isaiah Berlin, British social and political theorist, philosopher and historian, (1909-1997), The proper study of mankind: an anthology of essays, Chatto & Windus, 1997, p. 129.

"One of the most wonderful things about the emerging global superbrain is that information is overflowing on a scale beyond what we can wrap our heads around. The electronic, collective, hive mind that we know as the Internet produces so much information that organizing this data — and extracting meaning from it — has become the conversation of our time.

Sanford Kwinter’s Far From Equilibrium tackles everything from technology to society to architecture under the thesis that creativity, catharsis, transformation and progressive breakthroughs occur far from equilibrium. So even while we may feel overwhelmed and intimidated by the informational overload and radical transformations of our times, we should, perhaps, take refuge in knowing that only good can come from this. He writes:

“(…) We accurately think of ourselves today not only as citizens of an information society, but literally as clusters of matter within an unbroken informational continuum: "We are all," as the great composer Karlheinz Stockhausen once said, "transistors, in the literal sense. We send, receive and organize [and] so long as we are vital, our principle work is to capture and artfully incorporate the signals that surround us.” (…)

Clay Shirky often refers to the “Cognitive Surplus,” the overflowing output of the billion of minds participating in the electronic infosphere. A lot of this output is silly, but a lot of it is meaningful and wonderful. The key lies in curation; which is the result of pattern-recognition put into practice. (…)

Matt Ridley’s TED Talk, “When Ideas Have Sex” points to this intercourse of information and how it births new thought-patterns. Ideas, freed from the confines of space and time by the invisible, wireless metabrain we call The Internet, collide with one another and explode into new ideas; accelerating the collective intelligence of the species. Creativity thrives when minds come together. The last great industrial strength creative catalyst was the city: It is no coincidence than when people migrate to cities in large numbers, creativity and innovation thrives.  

Now take this very idea and apply it to the web:  the web  essentially is a planetary-scale nervous system where individual minds take on the role of synapses, firing electrical pattern-signals to one another at light speed — the net effect being an astonishing increase in creative output. (…)

Ray Kurzweil too, expounds on this idea of the power of patterns:

“I describe myself as a patternist, and believe that if you put matter and energy in just the right pattern you create something that transcends it. Technology is a good example of that: you put together lenses and mechanical parts and some computers and some software in just the right combination and you create a reading machine for the blind. It’s something that transcends the semblance of parts you’ve put together. That is the nature of technology, and it’s the nature of the human brain.

Biological molecules put in a certain combination create the transcending properties of human intelligence; you put notes and sounds together in just the rightcombination, and you create a Beethoven symphony or a Beatles song. So patterns have a power that transcends the parts of that pattern.”

R. Buckminster Fuller refers to us as “pattern integrities.” “Understanding order begins with understanding patterns,” he was known to say E.J. White, who worked with Fuller, says that:

“For Fuller, the thinking process is not a matter of putting anything into the brain or taking anything out; he defines thinking as the dismissal of irrelevancies, as the definition of relationships” — in other words, thinking is simultaneously a form of filtering out the data that doesn’t fit while highlighting the things that do fit together… We dismiss whatever is an “irrelevancy” and retain only what fits, we form knowledge by ‘connecting the dots’… we understand things by perceiving patterns — we arrive at conclusions when we successfully reveal these patterns. (…)

Fuller’s primary vocation is as a poet. All his disciplines and talents — architect, engineer, philosopher, inventor, artist, cartographer, teacher — are just so many aspects of his chief function as integrator… the word “poet" is a very general term for a person who puts things together in an era of great specialization when most people are differentiating or taking things apart… For Fuller, the stuff of poetry is the patterns of human behavior and the environment, and the interacting hierarchies of physics and design and industry. This is why he can describe Einstein and Henry Ford as the greatest poets of the 20th century.” (…)

In a recent article in Reality Sandwich, Simon G Powell proposed that patterned self-organization is a default condition of the universe: 

“When you think about it, Nature is replete with instances of self-organization. Look at how, over time, various exquisitely ordered patterns crystallise out of the Universe. On a macroscopic scale you have stable and enduring spherical stars, solar systems, and spiral galaxies. On a microscopic scale you have atomic and molecular forms of organization. And on a psychological level, fed by all this ambient order and pattern, you have consciousness which also seems to organise itself into being (by way of the brain). Thus, patterned organisation of one form or another is what nature is proficient at doing over time

This being the case, is it possible that the amazing synchronicities and serendipities we experience when we’re doing what we love, or following our passions — the signs we pick up on when we follow our bliss- represent an emerging ‘higher level’ manifestation of self-organization? To make use of an alluring metaphor, are certain events and cultural processes akin to iron filings coming under the organising influence of a powerful magnet? Is serendipity just the playing out on the human level of the same emerging, patterned self-organization that drives evolution?

Barry Ptolemy's film Transcendent Man reminds us that the universe has been unfolding in patterns of greater complexity since the beginning of time. Says Ptolemy:

First of all we are all patterns of information. Second, the universe has been revealing itself as patterns of information of increasing order since the big bang. From atoms, to molecules, to DNA, to brains, to technology, to us now merging with that technology. So the fact that this is happening isn’t particularly strange to a universe which continues to evolve and unfold at ever accelerating rates.”

Jason Silva, Connecting All The Dots - Jason Silva on Big think, Imaginary Fundation, Dec 2010

"Networks are everywhere. The brain is a network of nerve cells connected by axons, and cells themselves are networks of molecules connected by biochemical reactions. Societies, too, are networks of people linked by friendships, familial relationships and professional ties. On a larger scale, food webs and ecosystems can be represented as networks of species. And networks pervade technology: the Internet, power grids and transportation systems are but a few examples. Even the language we are using to convey these thoughts to you is a network, made up of words connected by syntactic relationships.”

'For decades, we assumed that the components of such complex systems as the cell, the society, or the Internet are randomly wired together. In the past decade, an avalanche of research has shown that many real networks, independent of their age, function, and scope, converge to similar architectures, a universality that allowed researchers from different disciplines to embrace network theory as a common paradigm.”

Albert-László Barabási , physicist, best known for his work in the research of network theory, and Eric Bonabeau, Scale-Free Networks, Scientific American, April 14, 2003.

Coral reefs are sometimes called “the cities of the sea”, and part of the argument is that we need to take the metaphor seriously: the reef ecosystem is so innovative because it shares some defining characteristics with actual cities. These patterns of innovation and creativity are fractal: they reappear in recognizable form as you zoom in and out, from molecule to neuron to pixel to sidewalk. Whether you’re looking at original innovations of carbon-based life, or the explosion of news tools on the web, the same shapes keep turning up. (…) When life gets creative, it has a tendency to gravitate toward certain recurring patterns, whether those patterns are self-organizing, or whether they are deliberately crafted by human agents.”

— Steven Johnson, author of Where Good Ideas Come From, cited by Jason Silva

"Network systems can sustain life at all scales, whether intracellularly or within you and me or in ecosystems or within a city. (…) If you have a million citizens in a city or if you have 1014 cells in your body, they have to be networked together in some optimal way for that system to function, to adapt, to grow, to mitigate, and to be long term resilient."

Geoffrey West, British theoretical physicist, The sameness of organisms, cities, and corporations: Q&A with Geoffrey West, TED, 26 July 2011.

“Recognizing this super-connectivity and conductivity is often accompanied by blissful mindbody states and the cognitive ecstasy of multiple “aha’s!” when the patterns in the mycelium are revealed. That Googling that has become a prime noetic technology (How can we recognize a pattern and connect more and more, faster and faster?: superconnectivity and superconductivity) mirrors the increased speed of connection of thought-forms from cannabis highs on up. The whole process is driven by desire not only for these blissful states in and of themselves, but also as the cognitive resource they represent.The devices of desire are those that connect,” because as Johnson says “chance favors the connected mind”.

Google and the Myceliation of Consciousness, Reality Sandwich, 10-11-2007

Jason Silva, Venezuelan-American television personality, filmmaker, gonzo journalist and founding producer/host for Current TV, To understand is to perceive patterns, Dec 25, 2011 (Illustration: Color Blind Test)

[This note will be gradually expanded]

See also:

The sameness of organisms, cities, and corporations: Q&A with Geoffrey West, TED, 26 July 2011.
☞ Albert-László Barabási and Eric Bonabeau, Scale-Free Networks, Scientific American, April 14, 2003.
Google and the Myceliation of Consciousness, Reality Sandwich, 10.11.2007
The Story of Networks, Lapidarium notes
Geoffrey West on Why Cities Keep Growing, Corporations and People Always Die, and Life Gets Faster
☞ Manuel Lima, visualcomplexity.com, A visual exploration on mapping complex networks
Constructal theory, Wiki
☞ A. Bejan, Constructal theory of pattern formation (pdf), Duke University
Pattern recognition, Wiki
Patterns tag on Lapidarium
Patterns tag on Lapidarium notes

Nov
23rd
Wed
permalink

The maps of the Internet

                                                          Click image to enlarge

The Opte Project was created to make a visual representation of a space that is very much one-dimensional, a metaphysical universe. The data represented and collected here serves a multitude of purposes: Modeling the Internet, analyzing wasted IP space, IP space distribution, detecting the result of natural disasters, weather, war, and esthetics/art.

"Within two weeks the self-described technologist and entrepreneur Barrett Lyon had created a program that could output a detailed visualization of Internet connectivity in a few hours. Seven years and billions more Internet-connected devices later, Lyon is still at it. This cosmic-looking image, one of his newest creations, traces the millions of routes along which data can travel and pinpoints the hubs receiving the most traffic. Internet giants such as AT&T and Google manage the most heavily used networks, which appear here as glowing yellow orbs; they tend to concentrate in the center of the sphere. The less popular local networks (red) sit on the periphery. Although Lyon’s visualizations have appeared in computing textbooks and at the Museum of Modern Art in New York.”

The Internet Looks Like a Fractal Dandelion, DISCOVER Magazine, Nov 11, 2011

                                                         Click image to enlarge

"This map is built off of our database using two different graphing engines: Large Graph Layout (LGL) by Alex Adai and Graphviz by Peter North at AT&T Labs Research.

This graph is by far our most complex. It is using over 5 million edges and has an estimated 50 million hop count.
Graph Colors:
Asia Pacific - Red
Europe/Middle East/Central Asia/Africa - Green
North America - Blue
Latin American and Caribbean - Yellow
RFC1918 IP Addresses - Cyan
Unknown - White
Date: Nov 22 2003

Today the image has been used free of charge across the globe and is part of the permanent collection at The Museum of Modern Art (MoMA) and the Boston Museum of Science. It has been used in countless books, media, and even movies.”

The Opte Project

Internet Mapping Project

                                                              Click image to enlarge

Image colored by IP address in 16 August 1998. More: The Internet Mapping Project.

See also:

The Cooperative Association for Internet Data Analysis
Cyber Geography Research
The Rocketfuel ISP topology mapping engine

Sep
29th
Thu
permalink

Vannevar Bush on the new relationship between thinking man and the sum of our knowledge (1945)

                             

Tim O’Reilly on the Birth of the global mind

“Computer scientist Danny Hillis once remarked, “Global consciousness is that thing responsible for deciding that pots containing decaffeinated coffee should be orange.” (…)

The web is a perfect example of what engineer and early computer scientist Vannevar Bush called “intelligence augmentation” by computers, in his 1945 article As We May Think” in The Atlantic. He described a future in which human ability to follow an associative knowledge trail would be enabled by a device he called “the memex”. This would improve on human memory in the precision of its recall. Google is today’s ultimate memex. (…)

This is man-computer symbiosis at its best, where the computer program learns from the activity of human teachers, and its sensors notice and remember things the humans themselves would not. This is the future: massive amounts of data created by people, stored in cloud applications that use smart algorithms to extract meaning from it, feeding back results to those people on mobile devices, gradually giving way to applications that emulate what they have learned from the feedback loops between those people and their devices.”

Tim O’Reilly, the founder of O’Reilly Media, a supporter of the free software and open source movements, Birth of the global mind, Financial Times, Sept 23, 2011

"In this significant article he [Vannevar Bush] holds up an incentive for scientists when the fighting has ceased. He urges that men of science should then turn to the massive task of making more accessible our bewildering store of knowledge. For years inventions have extended man’s physical powers rather than the powers of his mind. Trip hammers that multiply the fists, microscopes that sharpen the eye, and engines of destruction and detection are new results, but not the end results, of modern science. Now, says Dr. Bush, instruments are at hand which, if properly developed, will give man access to and command over the inherited knowledge of the ages. The perfection of these pacific instruments should be the first objective of our scientists as they emerge from their war work. Like Emerson’s famous address of 1837 on “The American Scholar,” this paper by Dr. Bush calls for a new relationship between thinking man and the sum of our knowledge.” - The Atlantic’ editor

"Assume a linear ratio of 100 for future use. Consider film of the same thickness as paper, although thinner film will certainly be usable. Even under these conditions there would be a total factor of 10,000 between the bulk of the ordinary record on books, and its microfilm replica. The Encyclopoedia Britannica could be reduced to the volume of a matchbox. A library of a million volumes could be compressed into one end of a desk. If the human race has produced since the invention of movable type a total record, in the form of magazines, newspapers, books, tracts, advertising blurbs, correspondence, having a volume corresponding to a billion books, the whole affair, assembled and compressed, could be lugged off in a moving van. Mere compression, of course, is not enough; one needs not only to make and store a record but also be able to consult it, and this aspect of the matter comes later. Even the modern great library is not generally consulted; it is nibbled at by a few. (…)

We may some day click off arguments on a machine with the same assurance that we now enter sales on a cash register. But the machine of logic will not look like a cash register, even of the streamlined model.

So much for the manipulation of ideas and their insertion into the record. Thus far we seem to be worse off than before—for we can enormously extend the record; yet even in its present bulk we can hardly consult it. This is a much larger matter than merely the extraction of data for the purposes of scientific research; it involves the entire process by which man profits by his inheritance of acquired knowledge. The prime action of use is selection, and here we are halting indeed. There may be millions of fine thoughts, and the account of the experience on which they are based, all encased within stone walls of acceptable architectural form; but if the scholar can get at only one a week by diligent search, his syntheses are not likely to keep up with the current scene. (…)

Consider a future device for individual use, which is a sort of mechanized private file and library. It needs a name, and, to coin one at random, “memex" will do. A memex is a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory.

It consists of a desk, and while it can presumably be operated from a distance, it is primarily the piece of furniture at which he works. On the top are slanting translucent screens, on which material can be projected for convenient reading. There is a keyboard, and sets of buttons and levers. Otherwise it looks like an ordinary desk.

In one end is the stored material. The matter of bulk is well taken care of by improved microfilm. Only a small part of the interior of the memex is devoted to storage, the rest to mechanism. Yet if the user inserted 5000 pages of material a day it would take him hundreds of years to fill the repository, so he can be profligate and enter material freely.

Most of the memex contents are purchased on microfilm ready for insertion. Books of all sorts, pictures, current periodicals, newspapers, are thus obtained and dropped into place. Business correspondence takes the same path. And there is provision for direct entry. On the top of the memex is a transparent platen. On this are placed longhand notes, photographs, memoranda, all sorts of things. When one is in place, the depression of a lever causes it to be photographed onto the next blank space in a section of the memex film, dry photography being employed.

There is, of course, provision for consultation of the record by the usual scheme of indexing. If the user wishes to consult a certain book, he taps its code on the keyboard, and the title page of the book promptly appears before him, projected onto one of his viewing positions. Frequently-used codes are mnemonic, so that he seldom consults his code book; but when he does, a single tap of a key projects it for his use. Moreover, he has supplemental levers. On deflecting one of these levers to the right he runs through the book before him, each page in turn being projected at a speed which just allows a recognizing glance at each. If he deflects it further to the right, he steps through the book 10 pages at a time; still further at 100 pages at a time. Deflection to the left gives him the same control backwards.

A special button transfers him immediately to the first page of the index. Any given book of his library can thus be called up and consulted with far greater facility than if it were taken from a shelf. As he has several projection positions, he can leave one item in position while he calls up another. He can add marginal notes and comments, taking advantage of one possible type of dry photography, and it could even be arranged so that he can do this by a stylus scheme, such as is now employed in the telautograph seen in railroad waiting rooms, just as though he had the physical page before him.

All this is conventional, except for the projection forward of present-day mechanisms and gadgetry. It affords an immediate step, however, to associative indexing, the basic idea of which is a provision whereby any item may be caused at will to select immediately and automatically another. This is the essential feature of the  memex. The process of tying two items together is the important thing. (…)

The owner of the memex, let us say, is interested in the origin and properties of the bow and arrow. Specifically he is studying why the short Turkish bow was apparently superior to the English long bow in the skirmishes of the Crusades. He has dozens of possibly pertinent books and articles in his memex. First he runs through an encyclopedia, finds an interesting but sketchy article, leaves it projected. Next, in a history, he finds another pertinent item, and ties the two together. Thus he goes, building a trail of many items. Occasionally he inserts a comment of his own, either linking it into the main trail or joining it by a side trail to a particular item. When it becomes evident that the elastic properties of available materials had a great deal to do with the bow, he branches off on a side trail which takes him through textbooks on elasticity and tables of physical constants. He inserts a page of longhand analysis of his own. Thus he builds a trail of his interest through the maze of materials available to him.

And his trails do not fade. Several years later, his talk with a friend turns to the queer ways in which a people resist innovations, even of vital interest. He has an example, in the fact that the outraged Europeans still failed to adopt the Turkish bow. In fact he has a trail on it. A touch brings up the code book. Tapping a few keys projects the head of the trail. A lever runs through it at will, stopping at interesting items, going off on side excursions. It is an interesting trail, pertinent to the discussion. So he sets a reproducer in action, photographs the whole trail out, and passes it to his friend for insertion in his own memex, there to be linked into the more general trail.

Wholly new forms of encyclopedias will appear, ready made with a mesh of associative trails running through them, ready to be dropped into the memex and there amplified. The lawyer has at his touch the associated opinions and decisions of his whole experience, and of the experience of friends and authorities. The patent attorney has on call the millions of issued patents, with familiar trails to every point of his client’s interest. The physician, puzzled by a patient’s reactions, strikes the trail established in studying an earlier similar case, and runs rapidly through analogous case histories, with side references to the classics for the pertinent anatomy and histology. The chemist, struggling with the synthesis of an organic compound, has all the chemical literature before him in his laboratory, with trails following the analogies of compounds, and side trails to their physical and chemical behavior.

The historian, with a vast chronological account of a people, parallels it with a skip trail which stops only on the salient items, and can follow at any time contemporary trails which lead him all over civilization at a particular epoch. There is a new profession of trail blazers, those who find delight in the task of establishing useful trails through the enormous mass of the common record. The inheritance from the master becomes, not only his additions to the world’s record, but for his disciples the entire scaffolding by which they were erected.

Thus science may implement the ways in which man produces, stores, and consults the record of the race. It might be striking to outline the instrumentalities of the future more spectacularly, rather than to stick closely to methods and elements now known and undergoing rapid development, as has been done here. Technical difficulties of all sorts have been ignored, certainly, but also ignored are means as yet unknown which may come any day to accelerate technical progress as violently as did the advent of the thermionic tube. In order that the picture may not be too commonplace, by reason of sticking to present-day patterns, it may be well to mention one such possibility, not to prophesy but merely to suggest, for prophecy based on extension of the known has substance, while prophecy founded on the unknown is only a doubly involved guess. (…)

In the outside world, all forms of intelligence whether of sound or sight, have been reduced to the form of varying currents in an electric circuit in order that they may be transmitted. Inside the human frame exactly the same sort of process occurs. Must we always transform to mechanical movements in order to proceed from one electrical phenomenon to another? It is a suggestive thought, but it hardly warrants prediction without losing touch with reality and immediateness.

Presumably man’s spirit should be elevated if he can better review his shady past and analyze more completely and objectively his present problems. He has built a civilization so complex that he needs to mechanize his records more fully if he is to push his experiment to its logical conclusion and not merely become bogged down part way there by overtaxing his limited memory. His excursions may be more enjoyable if he can reacquire the privilege of forgetting the manifold things he does not need to have immediately at hand, with some assurance that he can find them again if they prove important.

The applications of science have built man a well-supplied house, and are teaching him to live healthily therein. They have enabled him to throw masses of people against one another with cruel weapons. They may yet allow him truly to encompass the great record and to grow in the wisdom of race experience. He may perish in conflict before he learns to wield that record for his true good. Yet, in the application of science to the needs and desires of man, it would seem to be a singularly unfortunate stage at which to terminate the process, or to lose hope as to the outcome.”

Vannevar Bush, (1890-1974) American engineer and science administrator known for his work on analog computing, his political role in the development of the atomic bomb as a primary organizer of the Manhattan Project, the founding of Raytheon, and the idea of the memex, an adjustable microfilm viewer which is somewhat analogous to the structure of the World Wide Web, As We May Think, The Atlantic, July 1945 (Illustration: James Ferguson, FT)

See also:

Video archive of Oct 12-13 1995 MIT/Brown Symposium on the 50th Anniversary of As We May Think
"As We May Think" - A Celebration of Vannevar Bush’s 1945 Vision, at Brown University
Computing Pages by Francesc Hervada-Sala - “As We May Think” by Vannevar Bush
Timeline of hypertext technology (Wiki)
The Difference Between Online Knowledge and Truly Open Knowledge. In the era of the Internet facts are not bricks but networks

Sep
14th
Wed
permalink

Steven Pinker on the mind as a system of ‘organs of computation’

                      

I present the mind as a system of “organs of computation” that allowed our ancestors to understand and outsmart objects, animals, plants, and each other. (…)

Most of the assumptions about the mind that underlie current discussions are many decades out of date. Take the hydraulic model of Freud, in which psychic pressure builds up in the mind and can burst out unless it’s channeled into appropriate pathways. That’s just false. The mind doesn’t work by fluid under pressure or by flows of energy; it works by information.

Or, look at the commentaries on human affairs by pundits and social critics. They say we’re “conditioned” to do this, or “brainwashed” to do that, or “socialized” to believe such and such. Where do these ideas come from? From the behaviorism of the 1920’s, from bad cold war movies from the 1950’s, from folklore about the effects of family upbringing that behavior genetics has shown to be false. The basic understanding that the human mind is a remarkably complex processor of information, an “organ of extreme perfection and complication,” to use Darwin’s phrase, has not made it into the mainstream of intellectual life. (…)

I see the mind as an exquisitely engineered device—not literally engineered, of course, but designed by the mimic of engineering that we see in nature, natural selection. That’s what “engineered” animals’ bodies to accomplish improbable feats, like flying and swimming and running, and it is surely what “engineered” the mind to accomplish its improbable feats. (…)

What research in psychology should be: a kind of reverse engineering. When you rummage through an antique store and come across a contraption built of many finely meshing parts, you assume that it was put together for a purpose, and that if you only understood that purpose, you’d have insight as to why it has the parts arranged the way they are. That’s true for the mind as well, though it wasn’t designed by a designer but by natural selection. With that insight you can look at the quirks of the mind and ask how they might have made sense as solutions to some problem our ancestors faced in negotiating the world. That can give you an insight into what the different parts of the mind are doing.

Even the seemingly irrational parts of the mind, like strong passions—jealousy, revenge, infatuation, pride—might very well be good solutions to problems our ancestors faced in dealing with one another. For example, why do people do crazy things like chase down an ex-lover and kill the lover? How could you win someone back by killing them? It seems like a bug in our mental software. But several economists have proposed an alternative. If our mind is put together so that under some circumstances we are compelled to carry out a threat regardless of the costs to us, the threat is made credible. When a person threatens a lover, explicitly or implicitly, by communicating “If you ever leave me I’ll chase you down,” the lover could call his bluff if she didn’t have signs that he was crazy enough to carry it out even though it was pointless. And so the problem of building a credible deterrent into creatures that interact with one another leads to irrational behavior as a rational solution. "Rational," that is, with respect to the "goal" of our genes to maximize the number of copies of themselves. It isn’t "rational," of course, with respect to the goal of whole humans and societies to maximize happiness and fairness. (…)

The paradoxes of happiness

There’s no absolute standard for well-being. A Paleolithic hunter-gatherer should not have fretted that he had no running shoes or central heating or penicillin. How can a brain know whether there is something worth striving for? Well, it can look around and see how well off other people are. If they can achieve something, maybe so can you. Other people anchor your well-being scale and tell you what you can reasonably hope to achieve. (…)

Another paradox of happiness is that losses are felt more keenly than gains. As Jimmy Connors said, “I hate to lose more than I like to win.” You are just a little happy if your salary goes up, but you’re really miserable if your salary goes down by the same amount. That too might be a feature of the mechanism designed to attain the attainable and no more. When we backslide, we keenly feel it because what we once had is a good estimate of what we can attain. But when we improve we have no grounds for knowing that we are as well off as we can hope to be. The evolutionary psychologist Donald Campbell called it “the happiness treadmill." No matter how much you gain in fame, wealth, and so on, you end up at the same level of happiness you began with—though to go down a level is awful. Perhaps it’s because natural selection has programmed our reach to exceed our grasp, but by just a little bit. (…)

The brain as a kind of computer; information processing system

I place myself among those who think that you can’t understand the mind only by looking directly at the brain. Neurons, neurotransmitters, and other hardware features are widely conserved across the animal kingdom, but species have very different cognitive and emotional lives. The difference comes from the ways in which hundreds of millions of neurons are wired together to process information. I see the brain as a kind of computer—not like any commercial computer made of silicon, obviously, but as a device that achieves intelligence for some of the same reasons that a computer achieves intelligence, namely processing of information. (…)

I also believe that the mind is not made of Spam—it has a complex, heterogeneous structure. It is composed of mental organs that are specialized to do different things, like seeing, controlling hands and feet, reasoning, language, social interaction, and social emotions. Just as the body is divided into physical organs, the mind is divided into mental organs.

That puts me in agreement with Chomsky and against many neural network modelers, who hope that a single kind of neural network, if suitably trained, can accomplish every mental feat that we do. For similar reasons I disagree with the dominant position in modern intellectual life—that our thoughts are socially constructed by how we were socialized as children, by media images, by role models, and by conditioning. (…)

Many people lump together the idea that the mind has a complex innate structure with the idea that differences between people have to be innate. But the ideas are completely different. Every normal person on the planet could be innately equipped with an enormous catalog of mental machinery, and all the differences between people—what makes John different from Bill—could come from differences in experience, of upbringing, or of random things that happened to them when they were growing up.

To believe that there’s a rich innate structure common to every member of the species is different from saying the differences between people, or differences between groups, come from differences in innate structure. Here’s an example. Look at number of legs—it’s an innate property of the human species that we have two legs as opposed to six like insects, or eight like spiders, or four like cats—so having two legs is innate. But if you now look at why some people have one leg, and some people have no legs, it’s completely due to the environment—they lost a leg in an accident, or from a disease. So the two questions have to be distinguished. And what’s true of legs is also true of the mind. (…)

Computer technology will never change the world as long as it ignores how the mind works. Why did people instantly start to use fax machines, and continue to use them even though electronic mail makes much more sense? There are millions of people who print out text from their computer onto a piece of paper, feed the paper into a fax machine, forcing the guy at the other end to take the paper out, read it, and crumples it up—or worse, scan it into his computer so that it becomes a file of bytes all over again. This is utterly ridiculous from a technological point of view, but people do it. They do it because the mind evolved to deal with physical objects, and it still likes to conceptualize entities that are owned and transferred among people as physical objects that you can lift and store in a box. Until computer systems, email, video cameras, VCR’s and so on are designed to take advantage of the way the mind conceptualizes reality, namely as physical objects existing at a location and impinged upon by forces, people are going to be baffled by their machines, and the promise of the computer revolution will not be fulfilled. (…)

Q: What is the significance of the Internet and today’s communications revolution for the evolution of the mind?

Probably not much. You’ve got to distinguish two senses of the word “evolution.” The sense used by me, Dawkins, Gould, and other evolutionary biologists refers to the changes in our biological makeup that led us to be the kind of organism we are today. The sense used by most other people refers to continuous improvement or progress. A popular idea is that our biological evolution took us to a certain stage, and our cultural evolution is going to take over—where evolution in both cases is defined as “progress.” I would like us to move away from that idea, because that the processes that selected the genes that built our brains are different form the processes that propelled the rise and fall of empires and the march of technology and.

In terms of strict biological evolution, it’s impossible to know where, if anywhere, our species is going. Natural selection generally takes hundreds of thousands of years to do anything interesting, and we don’t know what our situation will be like in ten thousand or even one thousand years. Also, selection adapts organism to a niche, usually a local environment, and the human species moves all over the place and lurches from life style to life style with dizzying speed on the evolutionary timetable. Revolutions in human life like the agricultural, industrial, and information revolutions occur so quickly that no one can predict whether the change they will have on our makeup, or even whether there will be a change.

The Internet does create a kind of supra-human intelligence, in which everyone on the planet can exchange information rapidly, a bit like the way different parts of a single brain can exchange information. This is not a new process; it’s been happening since we evolved language. Even non-industrial hunter-gatherer tribes pool information by the use of language.

That has given them remarkable local technologies—ways of trapping animals, using poisons, chemically treating plant foods to remove the bitter toxins, and so on. That is also a collective intelligence that comes from accumulating discoveries over generations, and pooling them amongst a group of people living at one time. Everything that’s happened since, such as writing, the printing press, and now the Internet, are ways of magnifying something that our species already knew how to do, which is to pool expertise by communication. Language was the real innovation in our biological evolution; everything since has just made our words travel farther or last longer.”

Steven Pinker, Canadian-American experimental psychologist, cognitive scientist and linguist, Organs of Computation, Edge, January 11, 1997 (Illustration source)

See also:

☞ Steven Pinker, Harvard University Cambridge, MA, So How Does the Mind Work? (pdf), Blackwell Publishing Ltd. 2005

Sep
8th
Thu
permalink

Google and the Myceliation of Consciousness
    

"Is this the largest organism in the world? This 2,400-acre (9.7 km2) site in eastern Oregon had a contiguous growth of mycelium before logging roads cut through it. Estimated at 1,665 football fields in size and 2,200 years old, this one fungus has killed the forest above it several times over, and in so doing has built deeper soil layers that allow the growth of ever-larger stands of trees. Mushroom-forming forest fungi are unique in that their mycelial mats can achieve such massive proportions.”

Paul Stamets, American mycologist, author, Mycelium Running

"What Stamet calls the mycelial archetype [Mycelial nets are designed the same as brain cells: centers with branches reaching out, whole worlds. 96% of dark matter threads]. He compares the mushroom mycelium with the overlapping information-sharing systems that comprise the Internet, with the networked neurons in the brain, and with a computer model of dark matter in the universe. All share this densely intertwingled filamental structure. Stamets says in Mycelium Running,

“I believe that the mycelium operates at a level of complexity that exceeds the computational powers of our most advanced supercomputers. I see the mycelium as the Earth’s natural Internet, a consciousness with which we might be able to communicate.” (…)

This super-connectivity and conductivity is often accompanied by blissful mindbody states and the cognitive ecstasy of multiple “aha’s!” when the patterns in the mycelium are revealed. The Googling that has become a prime noetic technology (How can we recognize a pattern and connect more and more, faster and faster?: superconnectivity and superconductivity) mirrors the increased speed of connection of thought-forms from cannabis highs on up. The whole process is driven by desire not only for these blissful states in and of themselves, but also as the cognitive resource they represent. (…) The devices of desire are those that connect. The Crackberry is just the latest super-connectivity and conductivity device-of-desire.

The psilocybin mushroom embeds the form of its own life-cycle into consciousness when consciousness is altered by the mushroom, and this template, brought home to Google Earth, made into tools of connectivity, potentiates the mycelium of knowledge, connecting all cultural production. The traditional repositories—the books and print and CD and DVD materials—swarm online, along with intimate glimpses of Everyblogger’s Life in multimediated detail.

Here on Google watch, I’m tracking the form of this whole wildly interconnecting activity that this desire to connect inscribes, the millions of simultaneous individual expressions of desire: searches, adclicks, where am I?, what’s near me?, who’s connected to whom? The desire extends the filaments, and energizes the constant linking and unlinking of the vast signaling system that lights up the mycelium. Periodic visits to the psychedelic sphere reveal the progress of this mycelial growth, as well as its back-history, future, origins, inhabitants, and purpose. Google is growing the cultural mycelial mat, advancing this process exponentially. Google is the first psychedelically informed super-power to shape the noosphere and NASDAQ. Google is part of virtually everybody’s online day. The implications are staggering. (…)

In the domain of consciousness, super-connectivity and super-conductivity also reign. Superconductivity: speed is of the essence. Speed of conductivity of meaning. How fast can consciousness make meaning out of the flux of perceptions? (…)

When Google breaks through the natural language barrier and catches a glimpse, at least, of what it’s like to operate cognition entirely outside the veil of natural language, they will truly be Masters of Meaning. (…) Meaning manifests independently of language, though often finds itself entombed therein. But from this bootstrap move outside language, new insights arise regarding the structures and functions of natural language from a perspective that handles cognition with different tools, perceptions, sensory modalities—and produces new forms of language with new feature sets. (…)

This is the download Terence McKenna kept cycling through, and represents the key noetic technology for the stabilization of the transformation of consciousness in a sharable conceptual architecture. In Terence’s words,

It’s almost as though the project of communication becomes high-speed sculpture in a conceptual dimension made of light and intentionality. This would remain a kind of esoteric performance on the part of shamans at the height of intoxication if it were not for the fact that electronics and electronic cultural media, computers, make it possible for us to actually create records of these higher linguistic modalities.”

RoseRose, “paleoanthropologist from a distant timeframe”, in deep cover on Google Earth as a video performance artist, Google and the Myceliation of Consciousness, Reality Sandwich, Nov 10, 2007 (Illustration source)

See also:

☞ Paul Stamets, Six Ways Mushrooms Can Save the World, TED.com, 2008 (video)

Sep
2nd
Fri
permalink

Kevin Kelly on Why the Impossible Happens More Often

     
                                                   Noosphere by Tatiana Plakhova

"Everyone "knew" that people don’t work for free, and if they did, they could not make something useful without a boss. But today entire sections of our economy run on software instruments created by volunteers working without pay or bosses. Everyone knew humans were innately private beings, yet the impossibility of total open round-the-clock sharing still occurred. Everyone knew that humans are basically lazy, and they would rather watch than create, and they would never get off their sofas to create their own TV. It would be impossible that millions of amateurs would produce billions of hours of video, or that anyone would watch any of it. Like Wikipedia, or Linux, YouTube is theoretically impossible. But here this impossibility is real in practice. (…)

As far as I can tell the impossible things that happen now are in every case manifestations of a new, bigger level of organization. They are the result of large-scale collaboration, or immense collections of information, or global structures, or gigantic real-time social interactions. Just as a tissue is a new, bigger level of organization for a bunch of individual cells, these new social structures are a new bigger level for individual humans. And in both cases the new level breeds emergence. New behaviors emerge from the new level that were impossible at the lower level. Tissue can do things that cells can’t. The collectivist organizations of wikipedia, Linux, the web can do things that industrialized humans could not. (…)

The cooperation and coordination breed by irrigation and agriculture produced yet more impossible behaviors of anticipation and preparation, and sensitivity to the future. Human society unleashed all kinds of previously impossible human behaviors into the biosphere.

The technium is accelerating the creation of new impossibilities by continuing to invent new social organizations. (…)

When we are woven together into a global real-time society, the impossibilities will really start to erupt. It is not necessary that we invent some kind of autonomous global consciousness. It is only necessary that we connect everyone to everyone else. Hundreds of miracles that seem impossible today will be possible with this shared human awareness. (…)

In large groups the laws of statistics take over and our brains have not evolved to do statistics. The amount of data tracked is inhuman; the magnitudes of giga, peta, and exa don’t really mean anything to us; it’s the vocabulary of machines. Collectively we behave differently than individuals. Much more importantly, as individuals we behave differently in collectives. (…)

We are swept up in a tectonic shift toward large, fast, social organizations connecting us in novel ways. There may be a million different ways to connect a billion people, and each way will reveal something new about us. Something hidden previously. Others have named this emergence the Noosphere, or MetaMan, or Hive Mind. We don’t have a good name for it yet. (…)

I’ve used the example of the bee before. One could exhaustively study a honey bee for centuries and never see in the lone individual any of the behavior of a bee hive. It is just not there, and can not emerge until there are a mass of bees. A single bee lives 6 weeks, so a memory of several years is impossible, but that’s how long a hive of individual bees can remember. Humanity is migrating towards its hive mind. Most of what “everybody knows” about us is based on the human individual. Collectively, connected humans will be capable of things we cannot imagine right now. These future phenomenon will rightly seem impossible. What’s coming is so unimaginable that the impossibility of wikipedia will recede into outright obviousness.

Connected, in real time, in multiple dimensions, at an increasingly global scale, in matters large and small, with our permission, we will operate at a new level, and we won’t cease surprising ourselves with impossible achievements.”

Kevin Kelly, writer, the founding executive editor of Wired magazine, and a former editor/publisher of the Whole Earth Catalog, Why the Impossible Happens More Often, The Technium, 26 August 2011