Lapidarium notes RSS

Amira Skomorowska's notes

"Everything you can imagine is real."— Pablo Picasso

Lapidarium

Tags:

Africa
Age of information
Ancient
Anthropology
Art
Artificial intelligence
Astronomy
Atheism
Beauty
Biography
Books
China
Christianity
Civilization
Cognition, perception, relativity
Cognitive science
Collective intelligence
Communication
Consciousness
Creativity
Culture
Curiosity
Cyberspace
Democracy
Documentary
Drawing
Earth
Economy
Evolution
Friendship
Funny
Future
Genetics
Globalization
Happiness
History
Human being
Illustrations
Imagination
Individualism
Infographics
Information
Inspiration
Internet
Knowledge
Language
Learning
Life
Literature
Logic
Love
Mathematics
Media
Metaphor
Mind & Brain
Multiculturalism
Music
Networks
Neuroscience
Painting
Paradoxes
Patterns
Philosophy
Poetry
Politics
Physics
Psychology
Rationalism
Religions
Science
Science & Art
Self improvement
Semantics
Society
Sociology
Storytelling
Technology
The other
Time
Timeline
Traveling
Unconsciousness
Universe
USA
Video
Violence
Visualization


Pensieri a caso
Photography
A Box Of Stories
Reading Space
Homepage

Twitter
Facebook

Contact

Archive

Oct
29th
Tue
permalink

Beauty of Mathematics

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, without the gorgeous trappings of painting or music."

Betrand Russell, British philosopher, logician, mathematician, historian, and social critic (1872-1970)

By Yann Pineill & Nicolas Lefaucheux, parachutes.tv

Feb
10th
Sun
permalink

Universality: In Mysterious Pattern, Math and Nature Converge

image

"In 1999, while sitting at a bus stop in Cuernavaca, Mexico, a Czech physicist named Petr Šeba noticed young men handing slips of paper to the bus drivers in exchange for cash. It wasn’t organized crime, he learned, but another shadow trade: Each driver paid a “spy” to record when the bus ahead of his had departed the stop. If it had left recently, he would slow down, letting passengers accumulate at the next stop. If it had departed long ago, he sped up to keep other buses from passing him. This system maximized profits for the drivers. And it gave Šeba an idea. (…)

The interaction between drivers caused the spacing between departures to exhibit a distinctive pattern previously observed in quantum physics experiments. (…) “We felt here some kind of similarity with quantum chaotic systems.” (…) A “spy” network makes the decentralized bus system more efficient. As a consequence, the departure times of buses exhibit a ubiquitous pattern known as “universality.” (…)

Subatomic particles have little to do with decentralized bus systems. But in the years since the odd coupling was discovered, the same pattern has turned up in other unrelated settings. Scientists now believe the widespread phenomenon, known as “universality,” stems from an underlying connection to mathematics, and it is helping them to model complex systems from the internet to Earth’s climate. (…)

                image

The red pattern exhibits a precise balance of randomness and regularity known as “universality,” which has been observed in the spectra of many complex, correlated systems. In this spectrum, a mathematical formula called the “correlation function” gives the exact probability of finding two lines spaced a given distance apart. (…)

The pattern was first discovered in nature in the 1950s in the energy spectrum of the uranium nucleus, a behemoth with hundreds of moving parts that quivers and stretches in infinitely many ways, producing an endless sequence of energy levels. In 1972, the number theorist Hugh Montgomery observed it in the zeros of the Riemann zeta function, a mathematical object closely related to the distribution of prime numbers. In 2000, Krbálek and Šeba reported it in the Cuernavaca bus system. And in recent years it has shown up in spectral measurements of composite materials, such as sea ice and human bones, and in signal dynamics of the Erdös–Rényi model, a simplified version of the internet named for Paul Erdös and Alfréd Rényi. (…)

Each of these systems has a spectrum — a sequence like a bar code representing data such as energy levels, zeta zeros, bus departure times or signal speeds. In all the spectra, the same distinctive pattern appears: The data seem haphazardly distributed, and yet neighboring lines repel one another, lending a degree of regularity to their spacing. This fine balance between chaos and order, which is defined by a precise formula, also appears in a purely mathematical setting: It defines the spacing between the eigenvalues, or solutions, of a vast matrix filled with random numbers. (…)

It seems to be a law of nature,” said Van Vu, a mathematician at Yale University who, with Terence Tao of the University of California, Los Angeles, has proven universality for a broad class of random matrices.

Universality is thought to arise when a system is very complex, consisting of many parts that strongly interact with each other to generate a spectrum. The pattern emerges in the spectrum of a random matrix, for example, because the matrix elements all enter into the calculation of that spectrum. But random matrices are merely “toy systems” that are of interest because they can be rigorously studied, while also being rich enough to model real-world systems, Vu said. Universality is much more widespread. Wigner’s hypothesis (named after Eugene Wigner, the physicist who discovered universality in atomic spectra) asserts that all complex, correlated systems exhibit universality, from a crystal lattice to the internet.

     

Mathematicians are using random matrix models to study and predict some of the internet’s properties, such as the size of typical computer clusters. (Illustration: Matt Britt)

The more complex a system is, the more robust its universality should be, said László Erdös of the University of Munich, one of Yau’s collaborators. “This is because we believe that universality is the typical behavior.”

— Natalie Wolchover, In Mysterious Pattern, Math and Nature Converge, Wired, Feb 6, 2013. (Photo: Marco de Leija)

See also:

Mathematics of Disordered Quantum Systems and Matrices, IST Austria.

Jan
22nd
Tue
permalink

Kevin Slavin: How algorithms shape our world

“But the Turing test cuts both ways. You can’t tell if a machine has gotten smarter or if you’ve just lowered your own standards of intelligence to such a degree that the machine seems smart. If you can have a conversation with a simulated person presented by an AI program, can you tell how far you’ve let your sense of personhood degrade in order to make the illusion work for you?

People degrade themselves in order to make machines seem smart all the time. Before the crash, bankers believed in supposedly intelligent algorithms that could calculate credit risks before making bad loans. We ask teachers to teach to standardized tests so a student will look good to an algorithm. We have repeatedly demonstrated our species’ bottomless ability to lower our standards to make information technology look good. Every instance of intelligence in a machine is ambiguous.

The same ambiguity that motivated dubious academic AI projects in the past has been repackaged as mass culture today. Did that search engine really know what you want, or are you playing along, lowering your standards to make it seem clever? While it’s to be expected that the human perspective will be changed by encounters with profound new technologies, the exercise of treating machine intelligence as real requires people to reduce their mooring to reality.”

Jaron Lanier, You are Not a Gadget (2010)

Kevin Slavin argues that we’re living in a world designed for — and increasingly controlled by — algorithms. In this riveting talk from TEDGlobal, he shows how these complex computer programs determine: espionage tactics, stock prices, movie scripts, and architecture.

"We’re writing things (…) that we can no longer read. And we’ve rendered something illegible, and we’ve lost the sense of what’s actually happening in this world that we’ve made. (…)

“We’re running through the United States with dynamite and rock saws so that an algorithm can close the deal three microseconds faster, all for a communications framework that no human will ever know; that’s a kind of manifest destiny.”

Kevin Slavin, Entrepreneur, Raconteur Assistant Professor of Media Arts and Sciences, MIT Media Lab, Kevin Slavin: How algorithms shape our world, TED, July 2011.

See also:

☞ Jane Wakefield, When algorithms control the world, BBC, Aug 23, 2011.

Jun
3rd
Sun
permalink

Self as Symbol. The loopy nature of consciousness trips up scientists studying themselves

              
                                                          M.C. Escher’s “Drawing Hands”

"The consciousness problem remains popular on lists of problems that might never be solved.

Perhaps that’s because the consciousness problem is inherently similar to another famous problem that actually has been proved unsolvable: finding a self-consistent set of axioms for deducing all of mathematics. As the Austrian logician Kurt Gödel proved eight decades ago, no such axiomatic system is possible; any system as complicated as arithmetic contains true statements that cannot be proved within the system.

Gödel’s proof emerged from deep insights into the self-referential nature of mathematical statements. He showed how a system referring to itself creates paradoxes that cannot be logically resolved — and so certain questions cannot in principle be answered. Consciousness, in a way, is in the same logical boat. At its core, consciousness is self-referential awareness, the self’s sense of its own existence. It is consciousness itself that is trying to explain consciousness.

Self-reference, feedback loops, paradoxes and Gödel’s proof all play central roles in the view of consciousness articulated by Douglas Hofstadter in his 2007 book I Am a Strange Loop. Hofstadter is (among other things) a computer scientist, and he views consciousness through lenses unfamiliar to most neuroscientists. In his eyes, it’s not so bizarre to compare math and numbers to the mind and consciousness. Math is, after all, deeply concerned with logic and reason — the stuff of thought. Mathematical paradoxes, Hofstadter points out, open up “profound questions concerning the nature of reasoning — and thus concerning the elusive nature of thinking — and thus concerning the mysterious nature of the human mind itself.”

Enter the loop

In particular, Hofstadter seizes on Gödel’s insight that a mathematical formula — a statement about a number — can itself be represented by a number. So you can take the number describing a formula and insert that number into the formula, which then becomes a statement about itself. Such a self-referential capability introduces a certain “loopiness” into mathematics, Hofstadter notes, something like the famous Escher print of a right hand drawing a left hand, which in turn is drawing the right hand. This “strange loopiness” in math suggested to Hofstadter that something similar is going on in human thought.

So when he titled his book “I Am a Strange Loop,” Hofstadter didn’t mean that he was personally loopy, but that the concept of an individual — a persistent identity, an “I,” that accompanies what people refer to as consciousness — is a loop of a certain sort. It’s a feedback loop, like the circuit that turns a whisper into an ear-piercing screech when the microphone whispered into is too close to the loudspeaker emitting the sound.

But consciousness is more than just an ordinary feedback loop. It’s a strange loop, which Hofstadter describes as a loop capable of perceiving patterns in its environment and assigning common symbolic meanings to sufficiently similar patterns. An acoustic feedback loop generates no symbols, just noise. A human brain, though, can assign symbols to patterns. While patterns of dots on a TV screen are just dots to a mosquito, to a person, the same dots evoke symbols, such as football players, talk show hosts or NCIS agents. Floods of raw sensory data trigger perceptions that fall into categories designated by “symbols that stand for abstract regularities in the world,” Hofstadter asserts. Human brains create vast repertoires of these symbols, conferring the “power to represent phenomena of unlimited complexity and thus to twist back and to engulf themselves via a strange loop.”

Consciousness itself occurs when a system with such ability creates a higher-level symbol, a symbol for the ability to create symbols. That symbol is the self. The I. Consciousness. “You and I are mirages that perceive themselves,” Hofstadter writes.

This self-generated symbol of the self operates only on the level of symbols. It has no access to the workings of nerve cells and neurotransmitters, the microscopic electrochemical machinery of neurobiological life. The symbols that consciousness contemplates don’t look much like the real thing, the way a map of Texas conveys nothing of the grass and dirt and asphalt and bricks that cover the physical territory.

And just like a map of Texas remains remarkably stable over many decades — it doesn’t change with each new pothole in a Dallas street — human self-identity remains stable over a lifetime, despite constant changes on the micro level of proteins and cells. As an individual grows, matures, changes in many minute ways, the conscious self’s identity remains intact, just as Texas remains Texas even as new skyscrapers rise in the cities, farms grow different crops and the Red River sometimes shifts the boundary with Oklahoma a bit.

If consciousness were merely a map, a convenient shortcut symbol for a complex mess of neurobiological signaling, perhaps it wouldn’t be so hard to figure out. But its mysteries multiply because the symbol is generated by the thing doing the symbolizing. It’s like Gödel’s numbers that refer to formulas that represent truths about numbers; this self-referentialism creates unanswerable questions, unsolvable problems.

A typical example of such a Gödelian paradox is the following sentence: This sentence cannot be true.

Is that sentence true? Obviously not, because it says it isn’t true. But wait — then it is true. Except that it can’t be. Self-referential sentences seem to have it both ways — or neither way.

And so perceptual systems able to symbolize themselves — self-referential minds — can’t be explained just by understanding the parts that compose them. Simply describing how electric charges travel along nerve cells, how small molecules jump from one cell to another, how such signaling sends messages from one part of the brain to another — none of that explains consciousness any more than knowing the English alphabet letter by letter (and even the rules of grammar) will tell you the meaning of Shakespeare’s poetry.

Hofstadter does not contend, of course, that all the biochemistry and cellular communication is irrelevant. It provides the machinery for perceiving and symbolizing that makes the strange loop of consciousness possible. It’s just that consciousness does not itself deal with molecules and cells; it copes with thoughts and emotions, hopes and fears, ideas and desires. Just as numbers can represent the complexities of all of mathematics (including numbers), a brain can represent the complexities of experience (including the brain itself). Gödel’s proof showed that math is “incomplete”; it contains truths that can’t be proven. And consciousness is a truth of a sort that can’t be comprehended within a system of molecules and cells alone.

That doesn’t mean that consciousness can never be understood — Gödel’s work did not undermine human understanding of mathematics, it enriched it. And so the realization that consciousness is self-referential could also usher in a deeper understanding of what the word means — what it symbolizes.

Information handler

Viewed as a symbol, consciousness is very much like many of the other grand ideas of science. An atom is not so much a thing as an idea, a symbol for matter’s ultimate constituents, and the modern physical understanding of atoms bears virtually no resemblance to the original conception in the minds of the ancient Greeks who named them. Even Francis Crick’s gene made from DNA turned out to be much more elusive than the “unit of heredity” imagined by Gregor Mendel in the 19th century. The later coinage of the word gene to describe such units long remained a symbol; early 20th century experiments allowed geneticists to deduce a lot about genes, but nobody really had a clue what a gene was.

“In a sense people were just as vague about what genes were in the 1920s as they are now about consciousness,” Crick said in 1998. “It was exactly the same. The more professional people in the field, which was biochemistry at that time, thought that it was a problem that was too early to tackle.”

It turned out that with genes, their physical implementation didn’t really matter as much as the information storage and processing that genes engaged in. DNA is in essence a map, containing codes allowing one set of molecules to be transcribed into others necessary for life. It’s a lot easier to make a million copies of a map of Texas than to make a million Texases; DNA’s genetic mapping power is the secret that made the proliferation of life on Earth possible. Similarly, consciousness is deeply involved in representing information (with symbols) and putting that information together to make sense of the world. It’s the brain’s information processing powers that allow the mind to symbolize itself.

Koch believes that focusing on information could sharpen science’s understanding of consciousness. A brain’s ability to find patterns in influxes of sensory data, to send signals back and forth to integrate all that data into a coherent picture of reality and to trigger appropriate responses all seem to be processes that could be quantified and perhaps even explained with the math that describes how information works.

“Ultimately I think the key thing that matters is information,” Koch says. “You have these causal interactions and they can be quantified using information theory. Somehow out of that consciousness has to arrive.” An inevitable consequence of this point of view is that consciousness doesn’t care what kind of information processors are doing all its jobs — whether nerve cells or transistors.

“It’s not the stuff out of which your brain is made,” Koch says. “It’s what that stuff represents that’s conscious, and that tells us that lots of other systems could be conscious too.”

Perhaps, in the end, it will be the ability to create unmistakable features of consciousness in some stuff other than a biological brain that will signal success in the quest for an explanation. But it’s doubtful that experimentally exposing consciousness as not exclusively human will displace humankind’s belief in its own primacy. People will probably always believe that it can only be the strange loop of human consciousness that makes the world go ’round.

“We … draw conceptual boundaries around entities that we easily perceive, and in so doing we carve out what seems to us to be reality,” Hofstadter wrote. “The ‘I’ we create for each of us is a quintessential example of such a perceived or invented reality, and it does such a good job of explaining our behavior that it becomes the hub around which the rest of the world seems to rotate.”

Tom Siegfried, American journalist, author, Self as Symbol, Science News, Feb 11, 2012.

See also:

☞ Laura Sanders, Ph.D. in Molecular Biology from the University of Southern California in Los Angeles, Emblems of Awareness, Science News, Feb 11, 2012.

                                            Degress of thought

                                          (Credit: Stanford University)

"Awareness typically tracks with wakefulness — especially in normal states of consciousness (bold). People in coma or under general anesthesia score low on both measures, appearing asleep with no signs of awareness. Sometimes, wakefulness and awareness become uncoupled, such as among people in a persistent vegetative state. In this case, a person seems awake and is sometimes able to move but is unaware of the surroundings."  (…)

“Messages constantly zing around the brain in complex patterns, as if trillions of tiny balls were simultaneously dropped into a pinball machine, each with a prescribed, mission-critical path. This constant flow of information might be what creates consciousness — and interruptions might destroy it. (…)

“If you knock on a wooden table or a bucket full of nothing, you get different noises,” Massimini says. “If you knock on the brain that is healthy and conscious, you get a very complex noise.” (…)

In the same way that “life” evades a single, clear definition (growth, reproduction or a healthy metabolism could all apply), consciousness might turn out to be a collection of remarkable phenomena, Seth says. “If we can explain different aspects of consciousness, then my hope is that it will start to seem slightly less mysterious that there is consciousness at all in the universe.” (…)

Recipe for consciousness

Somehow a sense of self emerges from the many interactions of nerve cells and neurotransmitters in the brain — but a single source behind the phenomenon remains elusive.

            

                                                      Illustration: Nicolle Rager Fuller

1. Parietal cortex Brain activity in the parietal cortex is diminished by anesthetics, when people fall into a deep sleep and in people in a vegetative state or coma. There is some evidence suggesting that the parietal cortex is where first-person perspective is generated.

2. Frontal cortex Some researchers argue that parts of the frontal cortex (along with connections to the parietal cortex) are required for consciousness. But other scientists point to a few studies in which people with damaged frontal areas retain consciousness.

3. Claustrum An enigmatic, thin sheet of neural tissue called the claustrum has connections with many other regions. Though the structure has been largely ignored by modern scientists, Francis Crick became keenly interested in the claustrum’s role in consciousness just before his death in 2004.

4. Thalamus As one of the brain’s busiest hubs of activity, the thalamus is believed by many to have an important role in consciousness. Damage to even a small spot in the thalamus can lead to consciousness disorders.

5. Reticular activating system Damage to a particular group of nerve cell clusters, called the reticular activating system and found in the brain stem, can render a person comatose.”

☞ Bruce Hood, The Self Illusion: How the Brain Creates Identity
Theories of consciousness. Make Up Your Own Mind (visualization)
Malcolm MacIver on why did consciousness evolve, and how can we modify it?
Consciousness tag on Lapidarium

May
27th
Sun
permalink

Science Is Not About Certainty. Science is about overcoming our own ideas and a continuous challenge of common sense

       

“At the core of all well-founded belief lies belief that is unfounded.”

Ludwig Wittgenstein, On Certainty, #253, J. & J. Harper Editions, New York, 1969. 

"The value of philosophy is, in fact, to be sought largely in its very uncertainty. The man who has no tincture of philosophy goes through life imprisoned in the prejudices derived from common sense, from the habitual beliefs of his age or his nation, and from convictions which have grown up in his mind without the co-operation or consent of his deliberate reason. To such a man the world tends to become definite, finite, obvious; common objects rouse no questions, and unfamiliar possibilities are contemptuously rejected. As soon as we begin to philosophize, on the contrary, we find that even the most everyday things lead to problems to which only very incomplete answers can be given.

Philosophy, though unable to tell us with certainty what is the true answer to the doubts it raises, is able to suggest many possibilities which enlarge our thoughts and free them from the tyranny of custom. Thus, while diminishing our feeling of certainty as to what things are, it greatly increases our knowledge as to what they may be; it removes the somewhat arrogant dogmatism of those who have never traveled into the region of liberating doubt, and it keeps alive our sense of wonder by showing familiar things in an unfamiliar aspect.”

Bertrand RussellThe Problems of Philosophy (1912), Cosimo, Inc, 2010, p. 113-114.

We say that we have some theories about science. Science is about hypothetico-deductive methods, we have observations, we have data, data require to be organized in theories.  So then we have theories. These theories are suggested or produced from the data somehow, then checked in terms of the data. Then time passes, we have more data, theories evolve, we throw away a theory, and we find another theory which is better, a better understanding of the data, and so on and so forth. This is a standard idea of how science works, which implies that science is about empirical content, the true interesting relevant content of science is its empirical content. Since theories change, the empirical content is the solid part of what science is. Now, there’s something disturbing, for me as a theoretical scientist, in all this. I feel that something is missing. Something of the story is missing. I’ve been asking to myself what is this thing missing? (…)

This is particularly relevant today in science, and particularly in physics, because if I’m allowed to be polemical, in my field, in fundamental theoretical physics, it is 30 years that we fail. There hasn’t been a major success in theoretical physics in the last few decades, after the standard model, somehow. Of course there are ideas. These ideas might turn out to be right. Loop quantum gravity might turn out to be right, or not. String theory might turn out to be right, or not. But we don’t know, and for the moment, nature has not said yes in any sense.

I suspect that this might be in part because of the wrong ideas we have about science, and because methodologically we are doing something wrong, at least in theoretical physics, and perhaps also in other sciences.

Anaximander. Changing something in the conceptual structure that we have in grasping reality

Let me tell you a story to explain what I mean. The story is an old story about my latest, greatest passion outside theoretical physics: an ancient scientist, or so I would say, even if often je is called a philosopher: Anaximander. I am fascinated by this character, Anaximander. I went into understanding what he did, and to me he’s a scientist. He did something that is very typical of science, and which shows some aspect of what science is. So what is the story with Anaximander? It’s the following, in brief:

Until him, all the civilizations of the planet, everybody around the world, thought that the structure of the world was: the sky over our heads and the earth under our feet. There’s an up and a down, heavy things fall from the up to the down, and that’s reality. Reality is oriented up and down, heaven’s up and earth is down. Then comes Anaximander and says: no, is something else. ‘The earth is a finite body that floats in space, without falling, and the sky is not just over our head; it is all around.’

How he gets it? Well obviously he looks at the sky, you see things going around, the stars, the heavens, the moon, the planets, everything moves around and keeps turning around us. It’s sort of reasonable to think that below us is nothing, so it seems simple to get to this conclusion. Except that nobody else got to this conclusion. In centuries and centuries of ancient civilizations, nobody got there. The Chinese didn’t get there until the 17th century, when Matteo Ricci and the Jesuits went to China and told them. In spite of centuries of Imperial Astronomical Institute which was studying the sky. The Indians only learned this when the Greeks arrived to tell them. The Africans, in America, in Australia… nobody else got to this simple realization that the sky is not just over our head, it’s also under our feet. Why?

Because obviously it’s easy to suggest that the earth sort of floats in nothing, but then you have to answer the question: why doesn’t it fall? The genius of Anaximander was to answer this question. We know his answer, from Aristotle, from other people. He doesn’t answer this question, in fact. He questions this question. He says why should it fall? Things fall toward the earth. Why the earth itself should fall? In other words, he realizes that the obvious generalization from every small heavy object falling, to the earth itself falling, might be wrong. He proposes an alternative, which is that objects fall towards the earth, which means that the direction of falling changes around the earth.

This means that up and down become notions relative to the earth. Which is rather simple to figure out for us now: we’ve learned this idea. But if you think of the difficulty when we were children, to understand how people in Sydney could live upside-down, clearly requires some changing in something structural in our basic language in terms of which we understand the world. In other words, up and down means something different before and after Anaximander’s revolution.

He understands something about reality, essentially by changing something in the conceptual structure that we have in grasping reality. In doing so, he is not doing a theory; he understands something which in some precise sense is forever. It’s some uncovered truth, which to a large extent is a negative truth. He frees ourselves from prejudice, a prejudice that was ingrained in the conceptual structure we had for thinking about space.

Why I think this is interesting?  Because I think that this is what happens at every major step, at least in physics; in fact, I think this is what happened at every step, even not major. When I give a thesis to students, most of the time the problem I give for a thesis is not solved. It’s not solved because the solution of the question, most of the time, is not solving in the question, it’s just questioning the question itself. Is realizing that in the way the problem was formulated, there was some implicit prejudice assumption that was the one to be dropped.   

If this is so, the idea that we have data and theories, and then we have a rational agent that constructs theories from the data using his rationality, his mind, his intelligence, his conceptual structure, and juggles theories and data, doesn’t make any sense, because what is being challenged at every step is not the theory, it’s the conceptual structure used in constructing theories and interpreting the data. In other words, it’s not changing theories that we go ahead, but changing the way we think about the world.

The prototype of this way of thinking, I think the example that makes it more clear, is Einstein's discovery of special relativity. On the one hand there was Newtonian mechanics, which was extremely successful with its empirical content. On the other hand there was Maxwell’s theory, with its empirical content, which was extremely successful, too. But there was a contradiction between the two.

If Einstein had gone to school to learn what science is, if he had read Kuhn, and the philosopher explaining what science is, if he was any one of my colleagues today who are looking for a solution of the big problem of physics today, what would he do?

He would say, okay, the empirical content is the strong part of the theory. The idea in classical mechanics that velocity is relative: forget about it. The Maxwell equations, forget about them. Because this is a volatile part of our knowledge. The theories themselves have to be changed, okay? What we keep solid is the data, and we modify the theory so that it makes sense coherently, and coherently with the data.

That’s not at all what Einstein does. Einstein does the contrary. He takes the theories very seriously. He believes the theory. He says, look, classical mechanics is so successful that when it says that velocity is relative, we should take it seriously, and we should believe it. And the Maxwell equations are so successful that we should believe the Maxwell equations. He has so much trust in the theory itself, in the qualitative content of the theory, that qualitative content that Kuhn says changes all the time, that we learned not to take too seriously, and so much faith in this, confidence in that, that he’s ready to do what? To force coherence between these two, the two theories, by challenging something completely different, which is something that is in our head, which is how we think about time.

He’s changing something in common sense, something about the elementary structure in terms of which we think of the world, on the basis of the trust of the past results in physics. This is exactly the opposite of what is done today in physics. If you read Physical Review today, it’s all about theories that challenge completely and deeply the content of previous theories: so theories in which there is no Lorentz invariance, which are not relativistic, which are not general covariant, quantum mechanics might be wrong…

Every physicist today is immediately ready to say, okay, all of our past knowledge about the world is wrong. Let’s randomly pick some new idea. I suspect that this is not a small component of the long-term lack of success of theoretical physics. You understand something new about the world, either from new data that arrive, or from thinking deeply on what we have already learned about the world. But thinking means also accepting what we’ve learned, challenging what we think, and knowing that in some of the things that we think, there may be something to modify and to change.

Science is not about the data, but about the tools that we use

What are then the aspects of doing science that I think are under-evaluated, and should come up-front? First, science is about constructing visions of the world, about rearranging our conceptual structure, about creating new concepts which were not there before, and even more, about changing, challenging the a-priori that we have. So it’s nothing to do about the assembly of data and the way of organizing the assembly of data. It has everything to do about the way we think, and about our mental vision of the world. Science is a process in which we keep exploring ways of thinking, and changing our image of the world, our vision of the world, to find new ones that work a little bit better.

In doing that, what we have learned in the past is our main ingredient, especially the negative things we have learned. If we have learned that the earth is not flat, there will be no theory in the future in which the earth is ‘flat.’ If we have learned that the earth is not at the center of the universe, that’s forever. We’re not going to go back on this. If you have learned that simultaneity is relative, with Einstein, we’re not going back to absolute simultaneity, like many people think. This means that when an experiment measures neutrinos going faster than light, we should be very suspicious, and of course check and see whether there is something very deep that is happening. But it is absurd that everybody jumps and says okay, Einstein was wrong, just for a little anomaly that shows so. It never works like that in science.

The past knowledge is always with us, and it’s our main ingredient for understanding. The theoretical ideas which are based on ‘let’s imagine that this may happen because why not’ are not taking us anywhere.

I seem to be saying two things that contradict each other. On the one hand, we trust the knowledge, and on the other hand, we are always ready to modify in-depth part of our conceptual structure about the world. There is no contradiction between the two, because the idea of the contradiction comes from what I see as the deepest misunderstanding about science, which is the idea that science is about certainty

Science is not about certainty. Science is about finding the most reliable way of thinking, at the present level of knowledge. Science is extremely reliable; it’s not certain. In fact, not only it’s not certain, but it’s the lack of certainty that grounds it. Scientific ideas are credible not because they are sure, but because they are the ones that have survived all the possible past critiques, and they are the most credible because they were put on the table for everybody’s criticism.

The very expression ‘scientifically proven’ is a contradiction in terms. There is nothing that is scientifically proven. The core of science is the deep awareness that we have wrong ideas, we have prejudices. We have ingrained prejudices. In our conceptual structure for grasping reality there might be something not appropriate, something we may have to revise to understand better. So at any moment, we have a vision of reality that is effective, it’s good, it’s the best we have found so far. It’s the most credible we have found so far, its mostly correct.

But at the same time it’s not taken for certain, and any element of it is a priori open for revision. Why do we have this continuous…? On the one hand, we have this brain, and it has evolved for millions of years. It has evolved for us, for basically running the savannah and run after and eat deer and try not to be eaten by the lions. We have a brain that is tuned to meters and hours, which is not particularly well-tuned to think about atoms and galaxies. So we have to get out of that.  

At the same time I think we have been selected for going out of the forest, perhaps, going out of Africa, for being as smart as possible, as animals that escape lions. This continuous effort that is part of us to change our own way of thinking, to readapt, is a very part of our nature. We are not changing our mind away from nature; it is our natural history that continues to change that.      

If I can make a final comment about this way of thinking about science, or two final comments: One is that science is not about the data. The empirical content of scientific theory is not what is relevant. The data serves to suggest the theory, to confirm the theory, to disconfirm the theory, to prove the theory wrong. But these are the tools that we use. What interests us is the content of the theory. What interests us is what the theory says about the world. General relativity says space-time is curved. The data of general relativity are that Mercury perihelion moves 43 degrees per century, with respect to that computed with Newtonian mechanics.    

Who cares? Who cares about these details? If that was the content of general relativity, general relativity would be boring. General relativity is interesting not because of its data, but because it tells us that as far as we know today, the best way of conceptualizing space-time is as a curved object. It gives us a better way of grasping reality than Newtonian mechanics, because it tells us that there can be black holes, because it tells us there’s a Big Bang. This is the content of the scientific theory.

All living beings on earth have common ancestors. This is a content of scientific theory, not the specific data used to check the theory. So the focus of scientific thinking, I believe, should be on the content of the theory, the past theory, the previous theories, try to see what they hold concretely and what they suggest to us for changing in our conceptual frame themselves.  

Scientific thinking vs religious thinking

The final consideration regards just one comment about this understanding of science and this long conflict that has crossed the centuries between scientific thinking and religious thinking. I think often it is misunderstood. The question is, why can’t we live happily together, and why can’t people pray to their gods and study the universe without this continuous clash? I think that this continuous clash is a little bit unavoidable, for the opposite reason from the one often presented. It’s unavoidable not because science pretends to know the answers. But it’s the other way around, because if scientific thinking is this, then it is a constant reminder to ourselves that we don’t know the answers.

In religious thinking, often this is unacceptable. What is unacceptable is not a scientist that says I know, but it’s a scientist that says I don’t know, and how could you know? Based, at least in many religions, in some religions, or in some ways of being religious, an idea that there should be truth that one can hold and not be questioned. This way of thinking is naturally disturbed by a way of thinking which is based on continuous revision, not of the theories, of even the core ground of the way in which we think.     

The core of science is not certainty, it’s continuous uncertainty

So summarizing, I think science is not about data; it’s not about the empirical content, about our vision of the world. It’s about overcoming our own ideas, and about going beyond common sense continuously. Science is a continuous challenge of common sense, and the core of science is not certainty, it’s continuous uncertainty. I would even say the joy of taking what we think, being aware that in everything we think, there are probably still an enormous amount of prejudices and mistakes, and try to learn to look a little bit larger, knowing that there is always a larger point of view that we’ll expect in the future.    

We are very far from the final theory of the world, in my field, in physics, I think extremely far. Every hope of saying, well we are almost there, we’ve solved all the problems, is nonsense. And we are very wrong when we discard the value of theories like quantum mechanics, general relativity or special relativity, for that matter. And throw them away, trying something else randomly. On the basis of what we know, we should learn something more, and at the same time we should somehow take our vision for what it is, a vision that is the best vision that we have, but then continuous evolving the vision. (…) 

String theory's a beautiful theory. It might work, but I suspect it's not going to work. I suspect it's not going to work because it's not sufficiently grounded in everything we know so far about the world, and especially in what I think or perceive as the main physical content of general relativity.  

String theory’s a big guesswork. I think physics has never been a guesswork; it has been a way of unlearning how to think about something, and learning about how to think a little bit different by reading the novelty into the details of what we already know. Copernicus didn’t have any new data, any major new idea, he just took Ptolemy, in the details of Ptolemy, and he read in the details of Ptolemy the fact that the equants, the epicycles, the deferents were in certain proportions between them, the way to look at the same construction from a slightly different perspective and discover the earth is not the center of the universe.

Einstein, as I said, took seriously Maxwell’s theory and classical mechanics to get special relativity. So loop quantum gravity is an attempt to do the same thing: take seriously general relativity, take seriously quantum mechanics, and out of that, bring them together, even if this means a theory where there’s no time, no fundamental time, so we have rethink the world without basic time. The theory, on the one hand, is very conservative, because it’s based on what we know. But it’s totally radical because it forces us to change something big in our way of thinking.

String theorists think differently. They say well, let’s go out to infinity, where somehow the full covariance of general relativity is not there. There we know what is time, we know what is space, because we’re at asymptotic distances, at large distances. The theory’s wilder, more different, more new, but in my opinion, it’s more based on the old conceptual structure. It’s attached to the old conceptual structure, and not attached to the novel content of the theories that have proven empirically successful. That’s how my way of reading science matches with the specifics of the research work that I do, and specifically of loop quantum gravity.

Of course we don’t know. I want to be very clear. I think that string theory’s a great attempt to go ahead, done by great people. My only polemical attitude with string theory is when I hear, but I hear less and less now, when I hear ‘oh, we know the solution already, certain it’s string theory.’ That’s certainly wrong and false. What is true is that that’s a good set of ideas; loop quantum gravity is another good set of ideas. We have to wait and see which one of the theories turns out to work, and ultimately to be empirically confirmed.    

Should a scientist think about philosophy, or not?

This may take me to another point, which is should a scientist think about philosophy, or not? It’s sort of the fashion today to discard philosophy, to say now we have science, we don’t need philosophy. I find this attitude very naïve for two reasons. One is historical. Just look back. Heisenberg would have never done quantum mechanics without being full of philosophy. Einstein would have never done relativity without having read all the philosophers and have a head full of philosophy. Galileo would never have done what he had done without having a head full of Plato. Newton thought of himself as a philosopher, and started by discussing this with Descartes, and had strong philosophical ideas.

But even Maxwell, Boltzmann, I mean, all the major steps of science in the past were done by people who were very aware of methodological, fundamental, even metaphysical questions being posed. When Heisenberg does quantum mechanics, he is in a completely philosophical mind. He says in classical mechanics there’s something philosophically wrong, there’s not enough emphasis on empiricism. It is exactly this philosophical reading of him that allows him to construct this fantastically new physical theory, scientific theory, which is quantum mechanics.  

             
Paul Dirac and Richard Feynman. From The Strangest Man. Photograph by A. John Coleman, courtesy AIP Emilio Segre Visual Archives, Physics Today collection

The divorce between this strict dialogue between philosophers and scientists is very recent, and somehow it’s after the war, in the second half of the 20th century. It has worked because in the first half of the 20thcentury, people were so smart. Einstein and Heisenberg and Dirac and company put together relativity and quantum theory and did all the conceptual work. The physics of the second half of the century has been, in a sense, a physics of application of the great ideas of the people of the ’30s, of the Einsteins and the Heisenbergs.

When you want to apply thes ideas, when you do atomic physics, you need less conceptual thinking. But now we are back to the basics, in a sense. When we do quantum gravity it’s not just application. I think that the scientists who say I don’t care about philosophy, it’s not true they don’t care about philosophy, because they have a philosophy. They are using a philosophy of science. They are applying a methodology. They have a head full of ideas about what is the philosophy they’re using; just they’re not aware of them, and they take them for granted, as if this was obvious and clear. When it’s far from obvious and clear. They are just taking a position without knowing that there are many other possibilities around that might work much better, and might be more interesting for them.

I think there is narrow-mindedness, if I might say so, in many of my colleague scientists that don’t want to learn what is being said in the philosophy of science. There is also a narrow-mindedness in a lot of probably areas of philosophy and the humanities in which they don’t want to learn about science, which is even more narrow-minded. Somehow cultures reach, enlarge. I’m throwing down an open door if I say it here, but restricting our vision of reality today on just the core content of science or the core content of humanities is just being blind to the complexity of reality that we can grasp from a number of points of view, which talk to one another enormously, and which I believe can teach one another enormously.”

Carlo Rovelli, Italian theoretical physicist, working on quantum gravity and on foundations of spacetime physics. He is professor of physics at the University of the Mediterranean in Marseille, France and member of the Intitut Universitaire de France. To see the whole video and read the transcript, click Science Is Not About Certainty: A Philosophy Of Physics, Edge, May 24, 2012. (Illustration source)

See also:

Raphael Bousso: Thinking About the Universe on the Larger Scales
David Deutsch: A new way to explain explanation
Galileo and the relationship between the humanities and the sciences
The Relativity of Truth - a brief résumé, Lapidarium notes
Philosophy vs science: which can answer the big questions of life?
☞ ‘Cognition, perception, relativity’ tag on Lapidarium notes

Mar
26th
Mon
permalink

Science historian George Dyson: Unravelling the digital code
      
                                                     George Dyson (Photo: Wired)

"It was not made for those who sell oil or sardines."

— G. W. Leibniz, ca. 1674, on his calculating machine

A universe of self-replicating code

Digital organisms, while not necessarily any more alive than a phone book, are strings of code that replicate and evolve over time. Digital codes are strings of binary digits — bits. Google is a fantastically large number, so large it is almost beyond comprehension, distributed and replicated across all kinds of hosts. When you click on a link, you are replicating the string of code that it links to. Replication of code sequences isn’t life, any more than replication of nucleotide sequences is, but we know that it sometimes leads to life.

Q [Kevin Kelly]: Are we in that digital universe right now, as we talk on the phone?

George Dyson: Sure. You’re recording this conversation using a digital recorder — into an empty matrix of addresses on a microchip that is being filled up at 44 kilobytes per second. That address space full of numbers is the digital universe.

Q: How fast is this universe expanding?

G.D.: Like our own universe at the beginning, it’s more exploding than expanding. We’re all so immersed in it that it’s hard to perceive. Last time I checked, the digital universe was expanding at the rate of five trillion bits per second in storage and two trillion transistors per second on the processing side. (…)

Q: Where is this digital universe heading?

G.D.: This universe is open to the evolution of all kinds of things. It’s cycling faster and faster. Even with Google and YouTube and Facebook, we can’t consume it all. And we aren’t aware what this space is filling up with. From a human perspective, computers are idle 99 per cent of the time. While they’re waiting for us to come up with instructions, computation is happening without us, as computers write instructions for each other. As Turing showed, this space can’t be supervised. As the digital universe expands, so does this wild, undomesticated side.”

— George Dyson interviewed by Kevin Kelly in Science historian George Dyson: Unravelling the digital code, Wired, Mar 5, 2012.

"Just as we later worried about recombinant DNA, what if these things escaped? What would they do to the world? Could this be the end of the world as we know it if these self-replicating numerical creatures got loose?

But, we now live in a world where they did get loose—a world increasingly run by self-replicating strings of code. Everything we love and use today is, in a lot of ways, self-reproducing exactly as Turing, von Neumann, and Barricelli prescribed. It’s a very symbiotic relationship: the same way life found a way to use the self-replicating qualities of these polynucleotide molecules to the great benefit of life as a whole, there’s no reason life won’t use the self-replicating abilities of digital code, and that’s what’s happening. If you look at what people like Craig Venter and the thousand less-known companies are doing, we’re doing exactly that, from the bottom up. (…)

What’s, in a way, missing in today’s world is more biology of the Internet. More people like Nils Barricelli to go out and look at what’s going on, not from a business or what’s legal point of view, but just to observe what’s going on.

Many of these things we read about in the front page of the newspaper every day, about what’s proper or improper, or ethical or unethical, really concern this issue of autonomous self-replicating codes. What happens if you subscribe to a service and then as part of that service, unbeknownst to you, a piece of self-replicating code inhabits your machine, and it goes out and does something else? Who is responsible for that? And we’re in an increasingly gray zone as to where that’s going. (…)

Why is Apple one of the world’s most valuable companies? It’s not only because their machines are so beautifully designed, which is great and wonderful, but because those machines represent a closed numerical system. And they’re making great strides in expanding that system. It’s no longer at all odd to have a Mac laptop. It’s almost the normal thing.

But I’d like to take this to a different level, if I can change the subject… Ten or 20 years ago I was preaching that we should look at digital code as biologists: the Darwin Among the Machines stuff. People thought that was crazy, and now it’s firmly the accepted metaphor for what’s going on. And Kevin Kelly quoted me in Wired, he asked me for my last word on what companies should do about this. And I said, “Well, they should hire more biologists.”

But what we’re missing now, on another level, is not just biology, but cosmology. People treat the digital universe as some sort of metaphor, just a cute word for all these products. The universe of Apple, the universe of Google, the universe of Facebook, that these collectively constitute the digital universe, and we can only see it in human terms and what does this do for us?

We’re missing a tremendous opportunity. We’re asleep at the switch because it’s not a metaphor. In 1945 we actually did create a new universe. This is a universe of numbers with a life of their own, that we only see in terms of what those numbers can do for us. Can they record this interview? Can they play our music? Can they order our books on Amazon? If you cross the mirror in the other direction, there really is a universe of self-reproducing digital code. When I last checked, it was growing by five trillion bits per second. And that’s not just a metaphor for something else. It actually is. It’s a physical reality.

We’re still here at the big bang of this thing, and we’re not studying it enough. Who’s the cosmologist really looking at this in terms of what it might become in 10,000 years? What’s it going to be in 100 years? Here we are at the very beginning and we just may simply not be asking the right questions about what’s going on. Try looking at it from the other side, not from our side as human beings. Scientists are the people who can do that kind of thing. You can look at viruses from the point of view of a virus, not from the point of view of someone getting sick.

Very few people are looking at this digital universe in an objective way. Danny Hillis is one of the few people who is. His comment, made exactly 30 years ago in 1982, was that "memory locations are just wires turned sideways in time". That’s just so profound. That should be engraved on the wall. Because we don’t realize that there is this very different universe that does not have the same physics as our universe. It’s completely different physics. Yet, from the perspective of that universe, there is physics, and we have almost no physicists looking at it, as to what it’s like. And if we want to understand the sort of organisms that would evolve in that totally different universe, you have to understand the physics of the world in which they are in.  It’s like looking for life on another planet. Danny has that perspective. Most people say just, “well, a wire is a wire. It’s not a memory location turned sideways in time.” You have to have that sort of relativistic view of things.

We are still so close to the beginning of this explosion that we are still immersed in the initial fireball. Yet, in that short period of time, for instance, it was not long ago that to transfer money electronically you had to fill out paper forms on both ends and then wait a day for your money to be transferred. And, in a very few years, it’s a dozen years or so, most of the money in the world is moving electronically all the time.

The best example of this is what we call the flash crash of May 6th, two years ago, when suddenly, the whole system started behaving unpredictably. Large amounts of money were lost in milliseconds, and then the money came back, and we quietly (although the SEC held an investigation) swept it under the rug and just said, “well, it recovered. Things are okay.” But nobody knows what happened, or most of us don’t know.

There was a great Dutch documentary—Money and Speed: Inside the Black Box—where they spoke to someone named Eric Scott Hunsader who actually had captured the data on a much finer time scale, and there was all sorts of very interesting stuff going on. But it’s happening so quickly that it’s below what our normal trading programs are able to observe, they just aren’t accounting for those very fast things. And this could be happening all around us—not just in the world of finance. We would not necessarily even perceive it, that there’s a whole world of communication that’s not human communication. It’s machines communicating with machines. And they may be communicating money, or information that has other meaning—but if it is money, we eventually notice it. It’s just the small warm pond sitting there waiting for the spark.

It’s an unbelievably interesting time to be a digital biologist or a digital physicist, or a digital chemist. A good metaphor is chemistry. We’re starting to address code by template, rather than by numerical location—the way biological molecules do.

We’re living in a completely different world. The flash crash was an example: you could have gone out for a cup of coffee and missed the whole thing, and come back and your company lost a billion dollars and got back 999 million, while you were taking your lunch break. It just happened so fast, and it spread so quickly.

So, yes, the fear scenario is there, that some malevolent digital virus could bring down the financial system. But on the other hand, the miracle of this flash crash was not that it happened, but that it recovered so quickly. Yet, in those milliseconds, somebody made off with a lot of money. We still don’t know who that was, and maybe we don’t want to know.

The reason we’re here today (surrounded by this expanding digital universe) is because in 1936, or 1935, this oddball 23-year-old undergraduate student, Alan Turing, developed this theoretical framework to understand a problem in mathematical logic, and the way he solved that problem turned out to establish the model for all this computation. And I believe we wold have arrived here, sooner or later, without Alan Turing or John von Neumann, but it was Turing who developed the one-dimensional model, and von Neumann who developed the two-dimensional implementation, for this increasingly three-dimensional digital universe in which everything we do is immersed. And so, the next breakthrough in understanding will also I think come from some oddball. It won’t be one of our great, known scientists. It’ll be some 22-year-old kid somewhere who makes more sense of this.

But, we’re going back to biology, and of course, it’s impossible not to talk about money, and all these other ways that this impacts our life as human beings. What I was trying to say is that this digital universe really is so different that the physics itself is different. If you want to understand what types of life-like or self-reproducing forms would develop in a universe like that, you actually want to look at the sort of physics and chemistry of how that universe is completely different from ours. An example is how not only its time scale but how time operates is completely different, so that things can be going on in that world in microseconds that suddenly have a real effect on ours.

Again, money is a very good example, because money really is a sort of a gentlemen’s agreement to agree on where the money is at a given time. Banks decide, well, this money is here today and it’s there tomorrow. And when it’s being moved around in microseconds, you can have a collapse, where suddenly you hit the bell and you don’t know where the money is. And then everybody’s saying, “Where’s the money? What happened to it?” And I think that’s what happened. And there are other recent cases where it looks like a huge amount of money just suddenly disappeared, because we lost the common agreement on where it is at an exact point in time. We can’t account for those time periods as accurately as the computers can.

One number that’s interesting, and easy to remember, was in the year 1953, there were 53 kilobytes of high-speed memory on planet earth. This is random access high-speed memory. Now you can buy those 53 kilobytes for an immeasurably small, thousandth of one cent or something. If you draw the graph, it’s a very nice, clean graph. That’s sort of Moore’s Law; that it’s doubling. It has a doubling time that’s surprisingly short, and no end in sight, no matter what the technology does. We’re doubling the number of bits in a extraordinarily short time.

And we have never seen that. Or I mean, we have seen numbers like that, in epidemics or chain reactions, and there’s no question it’s a very interesting phenomenon. But still, it’s very hard not to just look at it from our point of view. What does it mean to us? What does it mean to my investments? What does it mean to my ability to have all the music I want on my iPhone? That kind of thing. But there’s something else going on. We’re seeing a fraction of one percent of it, and there’s this other 99.99 percent that people just aren’t looking at.

The beginning of this was driven by two problems. The problem of nuclear weapons design, and the problem of code breaking were the two drivers of the dawn of this computational universe. There were others, but those were the main ones.

What’s the driver today? You want one word? It’s advertising. And, you may think advertising is very trivial, and of no real importance, but I think it’s the driver. If you look at what most of these codes are doing, they’re trying to get the audience, trying to deliver the audience. The money is flowing as advertising.

And it is interesting that Samuel Butler imagined all this in 1863, and then in his book Erewhon. And then 1901, before he died, he wrote a draft for “Erewhon Revisited.” In there, he called out advertising, saying that advertising would be the driving force of these machines evolving and taking over the world. Even then at the close of 19th century England, he saw advertising as the way we would grant power to the machines.

If you had to say what’s the most powerful algorithm set loose on planet earth right now? Originally, yes, it was the Monte Carlo code for doing neutron calculations. Now it’s probably the AdWords algorithm. And the two are related: if you look at the way AdWords works, it is a Monte Carlo process. It’s a sort of statistical sampling of the entire search space, and a monetizing of it, which as we know, is a brilliant piece of work. And that’s not to diminish all the other great codes out there.

We live in a world where we measure numbers of computers in billions, and numbers of what we call servers, which are the equivalent of in the old days, of what would be called mainframes. Those are in the millions, hundreds of millions.

Two of the pioneers of this—to single out only two pioneers—were John Von Neumann and Alan Turing. If they were here today Turing would be 100. Von Neumann would be 109. I think they would understand what’s going on immediately—it would take them a few minutes, if not a day, to figure out, to understand what was going on. And, they both died working on biology, and I think they would be immediately fascinated by the way biological code and digital code are now intertwined. Von Neumann’s consuming passion at the end was self-reproducing automata. And Alan Turing was interested in the question of how molecules could self-organize to produce organisms.

They would be, on the other hand, astonished that we’re still running their machines, that we don’t have different computers. We’re still just running your straight Von Neumann/Turing machine with no real modification. So they might not find our computers all that interesting, but they would be diving into the architecture of the Internet, and looking at it.

In both cases, they would be amazed by the direct connection between the code running on computers and the code running in biology—that all these biotech companies are directly reading and writing nucleotide sequences in and out of electronic memory, with almost no human intervention. That’s more or less completely mechanized now, so there’s direct translation, and once you translate to nucleotides, it’s a small step, a difficult step, but, an inevitable step to translate directly to proteins. And that’s Craig Venter’s world, and it’s a very, very different world when we get there.

The question of how and when humans are going to expand into the universe, the space travel question, is, in my view, almost rendered obsolete by this growth of a digitally-coded biology, because those digital organisms—maybe they don’t exist now, but as long as the system keeps going, they’re inevitable—can travel at the speed of light. They can propagate. They’re going to be so immeasurably far ahead that maybe humans will be dragged along with it.

But while our digital footprint is propagating at the speed of light, we’re having very big trouble even getting to the eleven kilometers per second it takes to get into lower earth orbit. The digital world is clearly winning on that front. And that’s for the distant future. But it changes the game of launching things, if you no longer have to launch physical objects, in order to transmit life.”

George Dyson, author and historian of technology whose publications broadly cover the evolution of technology in relation to the physical environment and the direction of society, A universe of self-replicating code, Edge, Mar 26, 2012.

See also:

Jameson Dungan on information and synthetic biology
Vlatko Vedral: Decoding Reality: the universe as quantum information
Rethinking “Out of Africa: A Conversation with Christopher Stringer (2011)
A Short Course In Synthetic Genomics, The Edge Master Class with George Church & Craig Venter (2009)
Eat Me Before I Eat You! A New Foe For Bad Bugs: A Conversation with Kary Mullis (2010)
Mapping The Neanderthal Genome. A Conversation with Svante Pääbo (2009)
Engineering Biology”: A Conversation with Drew Endy (2008)
☞ “Life: A Gene-Centric View A Conversation in Munich with Craig Venter & Raichard Dawkins (2008)
Ants Have Algorithms: A Talk with Ian Couzin (2008)
Life: What A Concept, The Edge Seminar, Freeman Dyson, J. Craig Venter, George Church, Dimitar Sasselov, Seth Lloyd, Robert Shapiro (2007)
Code II J. Doyne Farmer v. Charles Simonyi (1998)
Jason Silva on singularity, synthetic biology and a desire to transcend human boundaries

Mar
21st
Wed
permalink

Richard Doyle on Creativity, evolution of mind and the rhetorical membrane between humans and an informational universe

              

Q [Jason Silva]: The Jesuit Priest and scientist Pierre Teilhard de Chardin spoke of the Noosphere very early on. A profile in WIRED Magazine article said, 

"Teilhard imagined a stage of evolution characterized by a complex membrane of information enveloping the globe and fueled by human consciousness”.. Teilhard saw the Net coming more than half a century before it arrived. He believed this vast thinking membrane would ultimately coalesce into “the living unity of a single tissue” containing our collective thoughts and experiences."  Teilhard wrote, "The living world is constituted by consciousness clothed in flesh and bone.

He argued that the primary vehicle for increasing complexity consciousness among living organisms was the nervous system. The informational wiring of a being, he argued - whether of neurons or electronics - gives birth to consciousness. As the diversification of nervous connections increases, evolution is led toward greater consciousness… thoughts?

Richard Doyle: Yes, he also called it this process of the evolution of consciousness “Omega Point”. The noosphere imagined here relied on a change in our relationship to  consciousness as much to any technological change and was part of evolution’s epic quest for self awareness. Here Teilhard is in accord with Julian Huxley (Aldous’ brother, a biologist) and Carl Sagan when they observed that “we are a way for the cosmos to know itself.” Sri Aurobindo’s The Life Divine traces out this evolution of consciousness as well through the greek and Sanskrit traditions as well as Darwinism and (relatively) modern philosophy. All are describing evolution’s slow and dynamic quest towards understanding itself.

         

I honestly think we are still grappling with the fact that our minds are distributed across a network by technology, and have been in a feedback loop between our brains and technologies at least since the invention of writing. As each new “mutation” occurs in the history of evolution of information technology, the very character of our minds shifts. McLuhan's Understanding Media is instructive here as well (he parsed it as the Global Village), and of course McLuhan was the bard who advised Leary on "Tune in, Turn on, Drop Out" and very influential on Terence McKenna.

One difference between now and Plato’s time is the infoquake through which we are all living. This radical increase in quantity no doubt has qualitative effects - it changes what it feels like to think and remember. Plato was working through the effect of one new information technology – writing – whereas today we “upgrade” every six months or so…Teilhard observes the correlative of this evolutionary increase in information - and the sudden thresholds it crosses - in the evolution of complexity and nervous systemsThe noosphere is a way of helping us deal with this “phase transition” of consciousness that may well be akin to the phase transition between liquid water and water vapor - a change in degree that effects a change in kind.

Darwin’s Pharmacy suggests that ecodelics were precisely such a mutation in information technology that increased sexually selective fitness through the capacity to process greater amounts of information, and that they are “extraordinarily sensitive to initial rhetorical traditions.” What this means is that because ecodelic experiences are so sensitive to the context in which we experience them, they can help make us aware of the effect of language and music etc on our consciousness, and thereby offer an awareness of our ability to effect our own consciousness through our linguistic and creative choices. This can be helpful when trying to browse the infoquake. Many other practices do so as well - meditation is the most well established practice for noticing the effects we can have on our own consciousness, and Sufi dervishes demonstrate this same outcome for dancing. I do the same on my bicycle, riding up a hill and chanting.

One problem I have with much of the discourse of “memes" is that it is often highly reductionistic - it often forgets that ideas have an ecology too, they must be "cultured." Here I would argue that drawing on Lawrence Lessig's work on the commons, the “brain” is a necessary but insufficient “spawning” ground for ideas that becomes actual. The commons is the spawning ground of ideas; brains are pretty obviously social as well as individual. Harvard biologist Richard Lewontin notes that there is no such thing as “self replicating” molecules, since they always require a context to be replicated. This problem goes back at last to computer scientist John Von Neumann's 1947 paper on Self reproducing automata.

I think Terence McKenna described the condition as "language is loose on planet three", and its modern version probably occurs first in the work of writer William S. Burroughs, whose notion of the "word virus" predates the "meme" by at least a decade. Then again this notion of "ideas are real" goes back to cosmologies that begin with the priority of consciousness over matter, as in "In the beginning was the word, and the word was god, and the word was with god." So even Burroughs could get a late pass for his idea. (…)

Q: Richard Dawkin's definition of a meme is quite powerful: 

“I think that a new kind of replicator has recently emerged on this very planet, […] already achieving evolutionary change at a rate that leaves the old gene panting far behind.” [the replicator is] human culture; the vector of transmission is language, and the spawning ground is the brain.”  

This notion that the ”the vector of transmission is language" is very compelling.. It seems to suggest that just as in biological evolution the vector of transmission has been the DNA molecule, in the noosphere, the next stage up, it is LANGUAGE that has become a major player in the transfer of information towards achieving evolutionary change.. Kind of affects how you think about the phrase “words have power”. This insight reminds me of a quote that describes, in words, the subjective ecstasy that a mind feels when upon having a transcendent realization that feels as if it advances evolution: 

"A universe of possibilities,

Grey infused by color,

The invisible revealed,

The mundane blown away

by awe” 

Is this what you mean by ‘the ecstasy of language’?

Richard Doyle: Above, I noted that ecodelics can make us aware of the feedback loops between our creative choices – should I eat mushrooms in a box? - Should I eat them with a fox? - and our consciousness. In other words, they can make us aware of the tremendous freedom we have in creating our own experience. Leary called this “internal freedom.” Becoming aware of the practically infinite choices we have to compose our lives, including the words we use to map them, can be overwhelming – we feel in these instances the “vertigo of freedom.” What to do? In ecodelic experience we can perceive the power of our maps. That moment in which we can learn to abide the tremendous creative choice we have, and take responsibility for it, is what I mean by the “ecstasy of language.” 

I would point out, though, that for those words you quote to do their work, they have to be read. The language does not do it "on its own" but as a result of the highly focused attention of readers. This may seem trivial but it is often left out, with some serious consequences. And “reading” can mean “follow up with interpretation”. I cracked up when I googled those lines above and found them in a corporate blog about TED, for example. Who knew that neo-romantic poetry was the emerging interface of the global corporate noosphere? (…)

Q: Buckminster Fuller described humans as "pattern integrities", Ray Kurzweil says we are "patterns of information". James Gleick's new book, The Information, says that “information may be more primary than matter”..  what do you make of this? And if we indeed are complex patterns, how can we hack the limitations of biology and entropy to preserve our pattern integrity indefinitely? 

Richard Doyle: First: It is important to remember that the history of the concept and tools of “information” is full of blindspots – we seem to be constantly tempted to underestimate the complexity of any given system needed to make any bit of information meaningful or useful. Caitlin, Kolmogorov Stephan Wolfram and John Von Neumann each came independently to the conclusion that information is only meaningful when it is “run” - you can’t predict the outcome of even many trivial programs without running the program. So to say that “information may be more primary than matter” we have to remember that “information” does not mean “free from constraints.” Thermodynamics – including entropy – remains.

Molecular and informatic reductionism – the view that you can best understand the nature of a biological system by cutting it up into the most significant bits, e.g. DNA – is a powerful model that enables us to do things with biological systems that we never could before. Artist Eduardo Kac collaborated with a French scientist to make a bioluminescent bunny. That’s new! But sometimes it is so powerful that we forget its limitations. The history of the human genome project illustrates this well. AND the human genome is incredibly interesting. It’s just not the immortality hack many thought it would be.

In this sense biology is not a limitation to be “transcended” (Kurzweil), but a medium of exploration whose constraints are interesting and sublime. On this scale of ecosystems, “death” is not a “limitation” but an attribute of a highly dynamic interactive system. Death is an attribute of life. Viewing biology as a “limitation” may not be the best way to become healthy and thriving beings.

Now, that said, looking at our characteristics as “patterns of information” can be immensely powerful, and I work with it at the level of consciousness as well as life. Thinking of ourselves as “dynamic patterns of multiply layered and interconnected self transforming information” is just as accurate of a description of human beings as “meaningless noisy monkeys who think they see god”, and is likely to have much better effects. A nice emphasis on this “pattern” rather than the bits that make it up can be found in Carl Sagan’s “The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.”

Q: Richard Dawkins declared in 1986 that ”What lies at the heart of every living thing is not a fire, not warm breath, not a ‘spark of life.’ It is information, words, instructions, […] If you want to understand life,” Dawkins wrote, “don’t think about vibrant, throbbing gels and oozes, think about information technology.” How would you explain the relationship between information technology and the reality of the physical world?

Richard Doyle: Again, information is indeed physical. We can treat a sequence of information as abstraction and take it out of its context – like a quotation or a jellyfish gene spliced into a rabbit to enable it to glow. We can compress information, dwindling the resources it takes to store or process it. But “Information, words, instructions” all require physical instantiation to even be “information, words, instructions.” Researcher Rolf Landauer showed back in the 1960s that even erasure is physical. So I actually think throbbing gels and oozes and slime mold and bacteria eating away at the garbage gyre are very important when we wish to “understand” life. I actually think Dawkins gets it wrong here – he is talking about “modeling” life, not “understanding” it. Erwin Schrödinger, the originator of the idea of the genetic code and therefore the beginning of the “informatic” tradition of biology that Dawkins speaks in here, knew this very well and insisted on the importance of first person experience for understanding.

So while I find these metaphors useful, that is exactly what they are: metaphors. There is a very long history to the attempt to model words and action together: Again, John 1:1 is closer to Dawkin’s position here than he may be comfortable with: “In the Beginning was the word, and the word was god, and the word was with god” is a way of working with this capacity of language to bring phenomena into being. It is really only because we habitually think of language as “mere words” that we continually forget that they are a manifestation of a physical system and that they have very actual effects not limited to the physics of their utterance – the words “I love you” can have an effect much greater than the amount of energy necessary to utter them. Our experiences are highly tuneable by the language we use to describe them.

Q: Talk about the mycelial archetype. Author Paul Stamet compares the pattern of the mushroom mycelium with the overlapping information-sharing systems that comprise the Internet, with the networked neurons in the brain, and with a computer model of dark matter in the universe. All share this densely intertwingled filamental structure…. what is the connection? what is the pattern that connects here? 

Richard Doyle: First things first: Paul Stamets is a genius and we should listen to his world view carefully and learn from it. Along with Lynn Margulis and Dorion Sagan, whose work I borrow from extensively in Darwin’s Pharmacy (as well as many others), Stamets is asking us to contemplate and act on the massive interconnection between all forms of life. This is a shift in worldview that is comparable to the Copernican shift from a geocentric cosmos – it is a shift toward interconnection and consciousness of interconnection. And I like how you weave in Gregory Bateson's phrase “the pattern that connects” here, because Bateson (whose father, William Bateson, was one of the founders of modern genetics) continuously pointed toward the need to develop ways of perceiving the whole. The “mycelial archetype”, as you call it, is a reliable and rather exciting way to recall the whole: What we call “mushrooms” are really the fruiting bodies of an extensive network of cross connection.

That fuzz growing in an open can of tomato paste in your fridge – mycelium. So even opening our refrigerator – should we be lucky enough to have one, with food in it - can remind us that what we take to be reality is is an actuality only appearance – a sliver, albeit a significant one for our world, of the whole. That fuzz can remind us that (1) appearance and reality or not the same thing at all and (2) beyond appearance there is a massive interconnection in unity. This can help remind us who and what we really are. 

With the word ‘archetype”, you of course invoke the psychologist Carl Jung who saw archetypes as templates for understanding, ways of organizing our story of the world. There are many archetypes – the Hero, the Mother, the Trickster, the sage. They are very powerful because they help stitch together what can seem to be a chaotic world – that is both their strength and their weakness. It is a weakness because most of the time we are operating within an archetype and we don’t even know it, and we don’t know therefore that we can change our archetype

By experimenting with a different archetype – imagining, for example, the world through the lens of a 2400 year old organism that is mostly invisible to a very short lived and recent species becoming aware of its creative responsibility in altering the planet – is incredibly powerful, and in Darwin’s Pharmacy I am trying to offer a way to experiment with the idea of plant planet as well as “mycelium” archetype. One powerful aspect of the treating the mycelium as our archetype as humanity is that it is “distributed” - it does not operate via a center of control but through cross connection “distributed” over a space.

Anything we can do to remember both our individuation and our interconnection is timely – we experience the world as individuals, and our task is to discover our nature within the larger scale reality of our dense ecological interconnection. In the book I point to the Upanishad’s “Tat Tvam Asi as a way of comprehending how we can both be totally individual and an aspect of the whole.

Q: You’ve talked about the ecstasy of language and the role of rhetoric in shaping reality.. These notions echo some of Terence McKenna's ideas about language… He calls language an “ecstatic activity of signification”… and says that for the “inspired one, it is almost as if existence is uttering itself through him”… Can you expand on this? How does language create reality?? 

Richard Doyle: It’s incredibly fun and insightful to echo Terence McKenna. He’s really in this shamanic bard tradition that goes all the back to Empedocles at least, and is distributed widely across the planet. He’s got a bit of Whitman in him with his affirmation of the erotic aspects of enlightenment. He was Emerson speaking to a Lyceum crowd remixed through rave culture. Leary and McKenna were resonating with the irish bard archetype. And Terrence was echoing Henry Munn, who was echoing Maria Sabina, whose chants and poetics can make her seem like Echo herself – a mythological story teller and poet (literally “sound”) who so transfixes Hera (Zeus’s wife) that Zeus can consort with nymphs. Everywhere we look there are allegories of sexual selection’s role in the evolution of poetic & shamanic language! 

And Terrence embodies the spirit of eloquence, helping translate our new technological realities (e.g. virtual reality, a fractal view of nature, radical ecology) and the states of mind that were likely to accompany them. Merlin Donald writes of the effects of “external symbolic storage” on human culture – as a onetime student of McLuhan’s, Donald was following up on Plato’s insights I mentioned above that writing changes how we think, and therefore, who we are

Human culture is going through a fantastic “reality crisis” wherein we discover the creative role we play in nature. Our role in global climate change – not to mention our role in dwindling biodiversity – is the “shadow” side of our increasing awareness that humans have a radical creative responsibility for their individual and collective lives. And our lives are inseparable from the ecosystems with which we are enmeshed. THAT is reality. To the extent that we can gather and focus our attention on retuning our relation towards ecosystems in crisis, language can indeed shape reality. We’ll get the future we imagine, not necessarily the one we deserve.

Q: Robert Anton Wilson spoke about “reality tunnels”…. These ‘constructs’ can limit our perspectives and perception of reality, they can trap us, belittle us, enslave us, make us miserable or set us free… How can we hack our reality tunnel?  Is it possible to use rhetoric and/or psychedelics to “reprogram” our reality tunnel? 

Richard Doyle: We do nothing but program and reprogram our reality tunnelsSeriously, the Japanese reactor crisis follows on the BP oil spill as a reminder that we are deeply interconnected on the level of infrastructure – technology is now planetary in scale, so what happens here effects somebody, sometimes Everybody, there. These infrastructures – our food sheds, our energy grid, our global media - run on networks, protocols, global standards, agreements: language, software, images, databases and their mycelial networks.

The historian Michel Foucault called these “discourses”, but we need to connect these discourses to the nonhuman networks with which they are enmeshed, and globalization has been in part about connecting discourses to each other across the planet. Ebola ends up in Virginia, Starbucks in Hong Kong. This has been true for a long time, of course – Mutual Assured Destruction was planetary in scale and required a communication and control structure linking, for example, a Trident submarine under the arctic ice sheet – remember that? - to a putatively civilian political structure Eisenhower rightly warned us about: the military industrial complex. The moon missions illustrate this principle as well – we remember what was said as much as what else was done, and what was said, for a while, seem to induce a sense of truly radical and planetary possibility.

So if we think of words as a description of reality rather than part of the infrastructure of reality, we miss out on the way different linguistic patterns act as catalysts for different realities. I call these “rhetorical softwares”. In my first two books, before I really knew about Wilson’s work or had worked through Korzybski with any intensity, I called these “rhetorical softwares.”

Now the first layer of our reality tunnel is our implicit sense of self – this is the only empirical reality any of us experiences – what we subjectively experience. RAW was a brilliant analyst of the ways experience is shaped by the language we use to describe it. One of my favorite examples from his work is his observation that in English, “reality” is a noun, so we start to treat it as a “thing”, when in fact reality, this cosmos, is also quite well mapped as an action – a dynamic unfolding for 13.7 billion years. That is a pretty big mismatch between language and reality, and can give us a sense that reality is inert, dead, lifeless, “concrete”, and thus not subject to change. By experimenting with what Wilson, following scientist John Lilly, called “metaprograms”, we can change the maps that shape the reality we inhabit. (…)

Q: The film Inception explored the notion that our inner world can be a vivid, experiential dimension, and that we can hack it, and change our reality… what do you make of this? 

Richard Doyle: The whole contemplative tradition insists on this dynamic nature of consciousness. “Inner” and “outer” are models for aspects of reality – words that map the world only imperfectly. Our “inner world” - subjective experience – is all we ever experience, so if we change it obviously we will see a change in what we label “external” reality it is of course part of and not separable from. One of the maps we should experiment with, in my view, is this “inner” and “outer” one – this is why one of my aliases is “mobius.” A mobius strip helps makes clear that “inside” and “outside” are… labels. As you run your finger along a mobius strip, the “inside” becomes “outside” and the “outside” becomes “inside.”.

Q: Can we give put inceptions out into the world?

Richard Doyle: We do nothing but! And, it is crucial to add, so too does the rest of our ecosystem. Bacteria engage in quorum sensing, begin to glow, and induce other bacteria to glow – this puts their inceptions into the world. Thanks to the work of scientists like Anthony Trewavas, we know that plants engage in signaling behavior between and across species and even kingdoms: orchids “throw” images of female wasps into the world, attracting male wasps, root cells map the best path through the soil. The whole blooming confusion of life is signaling, mapping and informing itself into the world. The etymology of “inception” is “to begin, take in hand” - our models and maps are like imagined handholds on a dynamic reality.

Q: What is the relationship between psychedelics and information technology? How are ipods, computers and the internet related to LSD? 

Richard Doyle: This book is part of a trilogy on the history of information in the life sciences. So, first: psychedelics and biology. It turns out that molecular biology and psychedelics were important contexts for each other. I first started noticing this when I found that many people who had taken LSD were talking about their experiences in the language of molecular biology – accessing their DNA and so forth. When I learned that psychedelic experience was very sensitive to “set and setting” - the mindset and context of their use - I wanted to find out how this language of molecular biology was effecting people’s experiences of the compounds. In other words, how did the language affect something supposedly caused by chemistry? 

Tracking the language through thousands of pages, I found that both the discourse of psychedelics and molecular biology were part of the “informatic vision” that was restructuring the life sciences as well as the world, and found common patterns of language in the work of Timothy Leary (the Harvard psychologist) and Francis Crick (who won the Nobel prize with James Watson and Maurice Wilkins for determining the structure of DNA in 1954), so in 2002 I published an article describing the common “language of information” spoken by Leary and Crick. I had no idea that Crick had apparently been using LSD when he was figuring out the structure of DNA. Yes, that blew my mind when it came out in 2004. I feel like I read that between the lines of Crick’s papers, which gave me confidence to write the rest of the book about the feedback between psychedelics and the world we inhabit.

The paper did hone in on the role that LSD played in the invention of PCR (polymerase chain reaction) – Kary Mullis, who won the Nobel prize for the invention of this method of making copies of a sequence of DNA, talked openly of the role that LSD played in the process of invention. Chapter 4 of the book looks to use of LSD in “creative problem solving” studies of the 1960s. These studies – hard to imagine now, 39 years into the War on Drugs, but we can Change the Archetype - suggest that used with care, psychedelics can be part of effective training in remembering how to discern the difference between words and things, maps and territories.

In short, this research suggested that psychedelics were useful for seeing the limitations of words as well as their power, perhaps occasioned by the experience of the linguistic feedback loops between language and psychedelic experiences that themselves could never be satisfactorily described in language. I argue that Mullis had a different conception of information than mainstream molecular biology – a pragmatic concept steeped in what you can do with words rather than in what they mean. Mullis seems to have thought of information as “algorithms” - recipes of code, while the mainsteam view was thinking of it as implicitly semantically, as “words with meaning.”

Ipods, Internet, etc: Well, in some cases there are direct connections. Perhaps Bill Joy said it best when he said that there was a reason that LSD and Unix were both from BerkeleyWhat the Doormouse Said by John Markoff came out after I wrote my first paper on Mullis and I was working on the book, and it was really confirmation of a lot of what I seeing indicated by my conceptual model of what is going on, which is as follows: Sexual selection is a good way to model the evolution of information technology. It yields bioluminescence – the most common communication strategy on the planet – chirping insects, singing birds, Peacocks fanning their feathers, singing whales, speaking humans, and humans with internet access. These are all techniques of information production, transformation or evaluation. I am persuaded by Geoffrey Miller’s update of Charles Darwin’s argument that language and mind are sexually selected traits, selected not simply for survival or even the representation of fitness, but for their sexiness. Leary: “Intelligence is the greatest aphrodisiac.”

I offer the hypothesis that psychedelics enter the human toolkit as “eloquence adjuncts” - tools and techniques for increasing the efficacy of language to seemingly create reality – different patterns of language ( and other attributes of set and setting) literally causes different experiences. The informatic revolution is about applying this ability to create reality with different “codes” to the machine interface. Perhaps this is one of the reason people like Mitch Kapor (a pioneer of computer spreadsheets), Stewart Brand (founder of a pre-internet computer commons known as the Well) and Bob Wallace (one of the original Microsoft seven and an early proponent of shareware), Mark Pesce were or are all psychonauts.

Q: Cyborg Anthropologist Amber Case has written about Techno-social wormholes.. the instant compression of time and space created every time we make a telephone call…  What do you make of this compression of time and space made possible by the engineering “magic” of technology? 

Richard Doyle:  It’s funny the role that the telephone call plays as an example in the history of our attempts to model the effects of information technologies. William Gibson famously defined cyberspace as the place where a telephone call takes place. (Gibson’s coinage of the term “cyberspace” is a good example of an “inception”) Avital Ronell wrote about Nietzsche’s telephone call to the beyond and interprets the history of philosophy according to a “telephonic logic”. When I was a child my father once threw our telephone into the atlantic ocean – that was what he made of the magic of that technology, at least in one moment of anger. This was back in the day when Bell owned your phone and there was some explaining to do. This magic of compression has other effects – my dad got phone calls all day at work, so when was at home he wanted to turn it off. The only way he knew to turn it off was to rip it out of the wall – there was no modular plug, just a wire into the wall - and throw it into the ocean.

So there is more than compression going on here: Deleuze and Guattari, along with the computer scientist Pierre Levy after them, call it “deterritorialization”. The differences between “here” and “there” are being constantly renegotiated as our technologies of interaction develop. Globalization is the collective effect of these deterritorializations and reterritorializations at any given moment.

And the wormhole example is instructive: the forces that enable such collapse of space and time as the possibility of time travel would likely tear us to smithereens. The tensions and torsions of this deterritorialization at part of what is at play in the Wikileaks revolutions, this compression of time and space offers promise for distributed governance as well as turbulence. Time travel through wormholes, by the way, is another example of an inception – Carl Sagan was looking for a reasonable way to transport his fictional aliens in Contact, called Cal Tech physicist Skip Thorne for help, and Thorne came up with the idea.

Q: The film Vanilla Sky explored the notion of a scientifically-induced lucid dream where we can live forever and our world is built out of our memories and ”sculpted moment to moment and lived with the romantic abandon of a summer day or the feeling of a great movie or a pop song you always loved”. Can we sculpt ‘real’ reality as if it were a “lucid dream”

Richard Doyle:Some traditions model reality as a lucid dream. The Diamond Sutra tells us that to be enlightened we must view reality as “a phantom, a dew drop, a bubble.”  This does not mean, of course, that reality does not exist, only that appearance has no more persistence than a dream and that what we call “reality” is our map of reality. When we wake up, the dream that had been so compelling is seen to be what it was: a dream, nothing more or less. Dreams do not lack reality – they are real patterns of information. They just aren’t what we usually think they are. Ditto for “ordinary” reality. Lucid dreaming has been practiced by multiple traditions for a long time – we can no doubt learn new ways of doing so. In the meantime, by recognizing and acting according to the practice of looking beyond appearances, we can find perhaps a smidgeon more creative freedom to manifest our intentions in reality.

Q: Paola Antonelli, design curator of MoMa, has written about Existenz Maximum, the ability of portable music devices like the ipod to create”customized realities”, imposing a soundtrack on the movie of our own life. This sounds empowering and godlike- can you expand on this notion? How is technology helping us design every aspect of both our external reality as well as our internal, psychological reality?

Richard Doyle: Well, the Upanishads and the Book of Luke both suggest that we “get our inner Creator on”, the former by suggesting that “Tat Tvam Asi” - there is an aspect of you that is connected to Everything, and the latter by recommending that we look not here or there for the Kingdom of God, but “within.” So if this sounds “god like”, it is part of a long and persistent tradition. I personally find the phrase “customized realities” redundant given the role of our always unique programs and metaprograms. So what we need to focus on his: to which aspect of ourselves do we wish to give this creative power? These customized realities could be enpowering and god like for corporations that own the material, or they could enpower our planetary aspect that unites all of us, and everything in between. It is, as always, the challenge of the magus and the artist to decide how we want to customize reality once we know that we can.

Q: The Imaginary Foundation says that "to understand is to perceive patterns"… Some advocates of psychedelic therapy have said that certain chemicals heighten our perception of patterns..They help! us “see more”.  What exactly are they helping us understand? 

Richard Doyle: Understanding! One of the interesting bits of knowledge that I found in my research was some evidence that psychonauts scored better on the Witkin Embedded Figure test, a putative measure of a human subject’s ability to “distinguish a simple geometrical figure embedded in a complex colored figure.” When we perceive the part within the whole, we can suddenly get context, understanding.

Q: An article pointing to the use of psychedelics as catalysts for breakthrough innovation in silicon valley says that users …

"employ these cognitive catalysts, de-condition their thinking periodically and come up with the really big connectivity ideas arrived at wholly outside the linear steps of argument. These are the gestalt-perceiving, asterism-forming “aha’s!” that connect the dots and light up the sky with a new archetypal pattern."

This seems to echo what other intellectuals have been saying for ages.  You referred to Cannabis as “an assassin of referentiality, inducing a butterfly effect in thought. Cannabis induces a parataxis wherein sentences resonate together and summon coherence in the bardos between one statement and another.”

Baudelaire also wrote about cannabis as inducing an artificial paradise of thought:  

“…It sometimes happens that people completely unsuited for word-play will improvise an endless string of puns and wholly improbable idea relationships fit to outdo the ablest masters of this preposterous craft. […and eventually]… Every philosophical problem is resolved. Every contradiction is reconciled. Man has surpassed the gods.”

Anthropologist Henry Munn wrote that:

"Intoxicated by the mushrooms, the fluency, the ease, the aptness of expression one becomes capable of are such that one is astounded by the words that issue forth… At times… the words leap to mind, one after another, of themselves without having to be searched for: a phenomenon similar to the automatic dictation of the surrealists except that here the flow of consciousness, rather than being disconnected, tends to be coherent: a rational enunciation of meanings.  The spontaneity they liberate is not only perceptual, but linguistic, the spontaneity of speech, of fervent, lucid discourse, astonishing. […] For the inspired one, it is as if existence were uttering itself through him […]

Can you expand a bit on how certain ecodelics (as well as marijuana) can help us de-condition our thinking, have creative breakthroughs as well as intellectual catharsis? How is it that “intoxication” could, under certain conditions, actually improve our cognition and creativity and contribute to the collective intelligence of the species?

Richard Doyle: I would point, again, to Pahnke's description of ego death. This is by definition an experience when our maps of the world are humbled. In the breakdown of our ordinary worldview - such as when a (now formerly)  secular being such as myself finds himself  feeling unmistakably sacred - we get a glimpse of reality without our usual filters. It is just not possible to use the old maps, so we get even an involuntary glimpse of reality. This is very close to the Buddhist practice of exhausting linguistic reference through chanting or Koans - suddenly we see the world through something besides our verbal mind.

Ramana Maharshi says that in the silence of the ego we perceive reality - reality IS the breakdown of the ego. Aldous Huxley, who was an extraordinarily adroit and eloquent writer with knowledge of increasingly rare breadth and depth, pointed to a quote by William Blake when trying to sum up his experience: the doors of perception were cleansed. This is a humble act, if you think about it: Huxley, faced with the beauty and grandeur of his mescaline experience, offers the equivalent of ‘What he said!”. Huxley also said that psychedelics offered a respite from “the throttling embrace of the self”, suggesting that we see the world without the usual filters of our egoic self. (…)

And if you look carefully at the studies by pioneers such as Myron Stolaroff and Willis Harman that you reference, as I do in the book, you will see that great care was taken to compose the best contexts for their studies. Subjects, for example, were told not to think about personal problems but to focus on their work at hand, and, astonishingly enough, it seems to have worked. These are very sensitive technologies and we really need much more research to explore their best use. This means more than studying their chemical function - it means studying the complex experiences human beings have with them. Step one has to be accepting that ecodelics are and always have been an integral part of human culture for some subset of the population. (…)

Q: Kevin Kelly refers to technological evolution as following the momentum begun at the big bang - he has stated:

"…there is a continuum, a connection back all the way to the Big Bang with these self-organizing systems that make the galaxies, stars, and life, and now is producing technology in the same way. The energies flowing through these things are, interestingly, becoming more and more dense. If you take the amount of energy that flows through one gram per second in a galaxy, it is increased when it goes through a star, and it is actually increased in life…We don’t realize this. We think of the sun as being a hugely immense amount of energy. Yet the amount of energy running through a sunflower per gram per second of the livelihood, is actually greater than in the sun. Actually, it’s so dense that when it’s multiplied out, the sunflower actually has a higher amount of energy flowing through it. "..

Animals have even higher energy usage than the plant, and a jet engine has even higher than an animal. The most energy-dense thing that we know about in the entire universe is the computer chip in your computer. It is sending more energy per gram per second through that than anything we know. In fact, if it was to send it through any faster, it would melt or explode. It is so energy-dense that it is actually at the edge of explosion.”…  

Can you comment on the implications of what he’s saying here?

Richard Doyle: I think maps of “continuity” are crucial and urgently needed. We can model the world as either “discrete” - made up of parts - or “continuous” - composing a whole - to powerful effect. Both are in this sense true. This is not “relativism” but a corollary of that creative freedom to choose our models that seems to be an attribute of consciousness. The mechanistic worldview extracts, separates and reconnects raw materials, labor and energy in ways that produce astonishing order as well as disorder (entropy).

By mapping the world as discrete – such as the difference between one second and another – and uniform – to a clock, there is no difference between one second and another – we have transformed the planet. Consciousness informed by discrete maps of reality has been an actual geological force in a tiny sliver of time. In so doing, we have have transformed the biosphere. So you can see just how actual this relation between consciousness, its maps, and earthly reality is. This is why Vernadsky, a geophysicist, thought we needed a new term for the way consciousness functions as a geological force: noosphere.

These discrete maps of reality are so powerful that we forget that they are maps. Now if the world can be cut up into parts, it is only because it forms a unity. A Sufi author commented that the unity of the world was both the most obvious and obscure fact. It is obvious because our own lives and the world we inhabit can be seen to continue without any experienced interruption – neither the world nor our lives truly stops and starts. This unity can be obscure because in a literal sense we can’t perceive it with our senses – this unity can only be “perceived” by our minds. We are so effective as separate beings that we forget the whole for the part.

The world is more than a collection of parts, and we can quote Carl Sagan: “The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.” Equally beautiful is what Sagan follows up with: “The cosmos is also within us. We are made of star stuff.” Perhaps this is why models such as Kelly’s feel so powerful: reminding ourselves that there is a continuity between the Big Bang and ourselves means we are an aspect of something unfathomably grand, beautiful, complex and unbroken. This is perhaps the “grandeur” Darwin was discussing. And when we experience that grandeur it can help us think and act in aways appropriate to a geological force.

I am not sure about the claims for energy that Kelly is making – I would have to see the context and the source of his data – but I do know that when it comes to thermodynamics, what he is saying rings true. We are dissipative structures far from equilibrium, meaning that we fulfill the laws of thermodynamics. Even though biological systems such as ourselves are incredibly orderly – and we export that order through our maps onto and into the world – we also yield more entropy than our absence. Living systems, according to an emerging paradigm of Stanley Salthe, Rob Swenson, the aforementioned Margulis and Sagan, Eric Schneider, James J. kay and others, maximize entropy, and the universe is seeking to dissipate ever greater amounts of entropy.

Order is a way to dissipate yet more energy. We’re thermodynamic beings, so we are always on the prowl for new ways to dissipate energy as heat and create uncertainty (entropy), and consciousness helps us find ever new ways to do so. (In case you are wondering, Consciousness is the organized effort to model reality that yields ever increasing spirals of uncertainty in Deep Time. But you knew that.) It is perhaps in this sense that, again following Carl Sagan, “ We are a way for the cosmos to know itself.” That is pretty great map of continuity.

What I don’t understand in Kelly’s work, and I need to look at with more attention, is the discontinuity he posits between biology and technology. In my view our maps have made us think of technology as different in kind from biology, but the global mycelial web of fungi suggests otherwise, and our current view of technology seems to intensify this sense of separation even as we get interconnected through technology. I prefer Noosphere to what Kelly calls the Technium because it reminds us of the ways we are biologically interconnected with our technosocial realities. Noosphere sprouts from biosphere.

Q: There is this notion of increasing complexity… Yet in a universe where entropy destroys almost everything, here we are, the cutting edge of evolution, taking the reigns and accelerating this emergent complexity.. Kurzweil says that this makes us “very important”: 

“…It turns out that we are central, after all.  Our ability to create models—virtual realities—in our brains, combined with ou modest-looking thumbs, has been sufficient to usher in another form of evolution: technology. That development enabled the persistence of the accelerating pace that started with biological evolution. It will continue until the entire universe is at our fingertips.”   

What do you think?

Richard Doyle: Well, I think from my remarks already you can see that I agree with Kurzweil here and can only suggest that it is for this very reason that we must be very creative, careful and cunning with our models. Do we model the technologies that we are developing according to the effects they will have on the planetary whole? Only rarely, though this is what we are trying to do at the Penn State Center for Nanofutures, as are lots of people involved in Science, Technology and Society as well as engineering education. When we develop technologies - and that is the way psychedelics arrived in modern culture, as technologies -  we must model their effects not only on the individuals who use them, but on the whole of our ecosystem and planetary society.

If our technological models are based on the premise that this is a dead planet – and most of them very much are, one is called all kinds of names if you suggest otherwise - animist, vitalist, Gaian intelligence agent, names I wear with glee – then we will end up with a asymptotically dead planet. Consciousness will, of course, like the Terminator, “Be Back” should we perish, but let us hope that it learns to experiment better with its maps and learns to notice reality just a little bit more. I am actually an optimist on this front and think that a widespread “aha” moment is occurring where there is a collective recognition of the feedback loops that make up our technological & biological evolution.

Again, I don’t know why Kurzweil seems to think that technological evolution is discontinuous with biological evolution – technology is nested within the network of “wetwares” that make it work, and our wetwares are increasingly interconnected with our technological infrastructure, as the meltdowns in Japan demonstrate along with the dependence of many of us – we who are more bacterial than human by dry weight - upon a network of pharmaceuticals and electricity for continued life. The E. coli outbreak in Europe is another case in point – our biological reality is linked with the technological reality of supply chain management. Technological evolution is biological evolution enabled by the maps of reality forged by consciousness. (…)

Whereas technology for many promised the “disenchantment” of the world –the rationalization of this world of the contemplative spirit as everything became a Machine – here was mystical contemplative experience manifesting itself directly within what sociologist Max Weber called the “iron cage of modernity”, Gaia bubbling up through technological “Babylon.”

Now many contemplatives have sought to share their experiences through writing – pages and pages of it. As we interconnect through information technology, we perhaps have the opportunity to repeat this enchanted contemplative experience of radical interconnection on another scale, and through other means. Just say Yes to the Noosphere!”

Richard Doyle, Professor of English Affiliate Faculty, Information Science and Technology at Pennsylvania State University, in conversation with Jason Silva, Creativity, evolution of mind and the “vertigo of freedom”, Big Think, June 21, 2011. (Illustrations: 1) Randy Mora, Artífices del sonido, 2) Noosphere)

See also:

☞ RoseRose, Google and the Myceliation of Consciousness
Kevin Kelly on Why the Impossible Happens More Often
Luciano Floridi on the future development of the information society
Luciano Floridi on The Digital Revolution as a Fourth Revolution: “P2P does’t mean Pirate to Pirate but Platonist to Platonist”
The Rise of the Conversation Society: information, communication and collaboration
Keen On… James Gleick: Why Cyberspace, As a Mode of Being, Will Never Go Away (TCTV), (video) TechCrunch, Jun 23, 2011
Timothy Leary on cybernetics and a new global culture
Mark Changizi on Humans, Version 3.0.
Cyberspace tag on Lapidarium

Dec
27th
Tue
permalink

'To understand is to perceive patterns'

                  

"Everything we care about lies somewhere in the middle, where pattern and randomness interlace."

James Gleick, The Information: A History, a Theory, a Flood, Pantheon, 2011

"Humans are pattern-seeking story-telling animals, and we are quite adept at telling stories about patterns, whether they exist or not."

Michael Shermer

"The pattern, and it alone, brings into being and causes to pass away and confers purpose, that is to say, value and meaning, on all there is. To understand is to perceive patterns. (…) To make intelligible is to reveal the basic pattern.”

Isaiah Berlin, British social and political theorist, philosopher and historian, (1909-1997), The proper study of mankind: an anthology of essays, Chatto & Windus, 1997, p. 129.

"One of the most wonderful things about the emerging global superbrain is that information is overflowing on a scale beyond what we can wrap our heads around. The electronic, collective, hive mind that we know as the Internet produces so much information that organizing this data — and extracting meaning from it — has become the conversation of our time.

Sanford Kwinter’s Far From Equilibrium tackles everything from technology to society to architecture under the thesis that creativity, catharsis, transformation and progressive breakthroughs occur far from equilibrium. So even while we may feel overwhelmed and intimidated by the informational overload and radical transformations of our times, we should, perhaps, take refuge in knowing that only good can come from this. He writes:

“(…) We accurately think of ourselves today not only as citizens of an information society, but literally as clusters of matter within an unbroken informational continuum: "We are all," as the great composer Karlheinz Stockhausen once said, "transistors, in the literal sense. We send, receive and organize [and] so long as we are vital, our principle work is to capture and artfully incorporate the signals that surround us.” (…)

Clay Shirky often refers to the “Cognitive Surplus,” the overflowing output of the billion of minds participating in the electronic infosphere. A lot of this output is silly, but a lot of it is meaningful and wonderful. The key lies in curation; which is the result of pattern-recognition put into practice. (…)

Matt Ridley’s TED Talk, “When Ideas Have Sex” points to this intercourse of information and how it births new thought-patterns. Ideas, freed from the confines of space and time by the invisible, wireless metabrain we call The Internet, collide with one another and explode into new ideas; accelerating the collective intelligence of the species. Creativity thrives when minds come together. The last great industrial strength creative catalyst was the city: It is no coincidence than when people migrate to cities in large numbers, creativity and innovation thrives.  

Now take this very idea and apply it to the web:  the web  essentially is a planetary-scale nervous system where individual minds take on the role of synapses, firing electrical pattern-signals to one another at light speed — the net effect being an astonishing increase in creative output. (…)

Ray Kurzweil too, expounds on this idea of the power of patterns:

“I describe myself as a patternist, and believe that if you put matter and energy in just the right pattern you create something that transcends it. Technology is a good example of that: you put together lenses and mechanical parts and some computers and some software in just the right combination and you create a reading machine for the blind. It’s something that transcends the semblance of parts you’ve put together. That is the nature of technology, and it’s the nature of the human brain.

Biological molecules put in a certain combination create the transcending properties of human intelligence; you put notes and sounds together in just the rightcombination, and you create a Beethoven symphony or a Beatles song. So patterns have a power that transcends the parts of that pattern.”

R. Buckminster Fuller refers to us as “pattern integrities.” “Understanding order begins with understanding patterns,” he was known to say E.J. White, who worked with Fuller, says that:

“For Fuller, the thinking process is not a matter of putting anything into the brain or taking anything out; he defines thinking as the dismissal of irrelevancies, as the definition of relationships” — in other words, thinking is simultaneously a form of filtering out the data that doesn’t fit while highlighting the things that do fit together… We dismiss whatever is an “irrelevancy” and retain only what fits, we form knowledge by ‘connecting the dots’… we understand things by perceiving patterns — we arrive at conclusions when we successfully reveal these patterns. (…)

Fuller’s primary vocation is as a poet. All his disciplines and talents — architect, engineer, philosopher, inventor, artist, cartographer, teacher — are just so many aspects of his chief function as integrator… the word “poet" is a very general term for a person who puts things together in an era of great specialization when most people are differentiating or taking things apart… For Fuller, the stuff of poetry is the patterns of human behavior and the environment, and the interacting hierarchies of physics and design and industry. This is why he can describe Einstein and Henry Ford as the greatest poets of the 20th century.” (…)

In a recent article in Reality Sandwich, Simon G Powell proposed that patterned self-organization is a default condition of the universe: 

“When you think about it, Nature is replete with instances of self-organization. Look at how, over time, various exquisitely ordered patterns crystallise out of the Universe. On a macroscopic scale you have stable and enduring spherical stars, solar systems, and spiral galaxies. On a microscopic scale you have atomic and molecular forms of organization. And on a psychological level, fed by all this ambient order and pattern, you have consciousness which also seems to organise itself into being (by way of the brain). Thus, patterned organisation of one form or another is what nature is proficient at doing over time

This being the case, is it possible that the amazing synchronicities and serendipities we experience when we’re doing what we love, or following our passions — the signs we pick up on when we follow our bliss- represent an emerging ‘higher level’ manifestation of self-organization? To make use of an alluring metaphor, are certain events and cultural processes akin to iron filings coming under the organising influence of a powerful magnet? Is serendipity just the playing out on the human level of the same emerging, patterned self-organization that drives evolution?

Barry Ptolemy's film Transcendent Man reminds us that the universe has been unfolding in patterns of greater complexity since the beginning of time. Says Ptolemy:

First of all we are all patterns of information. Second, the universe has been revealing itself as patterns of information of increasing order since the big bang. From atoms, to molecules, to DNA, to brains, to technology, to us now merging with that technology. So the fact that this is happening isn’t particularly strange to a universe which continues to evolve and unfold at ever accelerating rates.”

Jason Silva, Connecting All The Dots - Jason Silva on Big think, Imaginary Fundation, Dec 2010

"Networks are everywhere. The brain is a network of nerve cells connected by axons, and cells themselves are networks of molecules connected by biochemical reactions. Societies, too, are networks of people linked by friendships, familial relationships and professional ties. On a larger scale, food webs and ecosystems can be represented as networks of species. And networks pervade technology: the Internet, power grids and transportation systems are but a few examples. Even the language we are using to convey these thoughts to you is a network, made up of words connected by syntactic relationships.”

'For decades, we assumed that the components of such complex systems as the cell, the society, or the Internet are randomly wired together. In the past decade, an avalanche of research has shown that many real networks, independent of their age, function, and scope, converge to similar architectures, a universality that allowed researchers from different disciplines to embrace network theory as a common paradigm.”

Albert-László Barabási , physicist, best known for his work in the research of network theory, and Eric Bonabeau, Scale-Free Networks, Scientific American, April 14, 2003.

Coral reefs are sometimes called “the cities of the sea”, and part of the argument is that we need to take the metaphor seriously: the reef ecosystem is so innovative because it shares some defining characteristics with actual cities. These patterns of innovation and creativity are fractal: they reappear in recognizable form as you zoom in and out, from molecule to neuron to pixel to sidewalk. Whether you’re looking at original innovations of carbon-based life, or the explosion of news tools on the web, the same shapes keep turning up. (…) When life gets creative, it has a tendency to gravitate toward certain recurring patterns, whether those patterns are self-organizing, or whether they are deliberately crafted by human agents.”

— Steven Johnson, author of Where Good Ideas Come From, cited by Jason Silva

"Network systems can sustain life at all scales, whether intracellularly or within you and me or in ecosystems or within a city. (…) If you have a million citizens in a city or if you have 1014 cells in your body, they have to be networked together in some optimal way for that system to function, to adapt, to grow, to mitigate, and to be long term resilient."

Geoffrey West, British theoretical physicist, The sameness of organisms, cities, and corporations: Q&A with Geoffrey West, TED, 26 July 2011.

“Recognizing this super-connectivity and conductivity is often accompanied by blissful mindbody states and the cognitive ecstasy of multiple “aha’s!” when the patterns in the mycelium are revealed. That Googling that has become a prime noetic technology (How can we recognize a pattern and connect more and more, faster and faster?: superconnectivity and superconductivity) mirrors the increased speed of connection of thought-forms from cannabis highs on up. The whole process is driven by desire not only for these blissful states in and of themselves, but also as the cognitive resource they represent.The devices of desire are those that connect,” because as Johnson says “chance favors the connected mind”.

Google and the Myceliation of Consciousness, Reality Sandwich, 10-11-2007

Jason Silva, Venezuelan-American television personality, filmmaker, gonzo journalist and founding producer/host for Current TV, To understand is to perceive patterns, Dec 25, 2011 (Illustration: Color Blind Test)

[This note will be gradually expanded]

See also:

The sameness of organisms, cities, and corporations: Q&A with Geoffrey West, TED, 26 July 2011.
☞ Albert-László Barabási and Eric Bonabeau, Scale-Free Networks, Scientific American, April 14, 2003.
Google and the Myceliation of Consciousness, Reality Sandwich, 10.11.2007
The Story of Networks, Lapidarium notes
Geoffrey West on Why Cities Keep Growing, Corporations and People Always Die, and Life Gets Faster
☞ Manuel Lima, visualcomplexity.com, A visual exploration on mapping complex networks
Constructal theory, Wiki
☞ A. Bejan, Constructal theory of pattern formation (pdf), Duke University
Pattern recognition, Wiki
Patterns tag on Lapidarium
Patterns tag on Lapidarium notes

Apr
2nd
Sat
permalink

John Shotter on encounters with ‘Other’ - from inner mental representation to dialogical social practices

                
                                      
M. C. Escher, Relativity (july 1953)

"It is then that the reader asks that crucial question, ‘What’s it all about?’ But what ‘it’ is, is not the actual text… but the text the reader has constructed under its sway. And that is why the actual text needs the subjunctivity that makes it possible for a reader to create a world of his [or her] own." Jerome Seymour Bruner, Actual Minds, Possible Worlds Cambridge, MA: Harvard University Press, 1986, p.37.

"Only in the stream of thought and life do words have meaning." Ludwig Wittgenstein, Zettel, G.E.M. Anscombe and G.H.V. Wright (Eds.). Oxford: Blackwell, 1981, no.173.

One of our tasks in understanding an Other, is to do justice to the uniqueness of their otherness. But this is not easy, for, as we shall see, it is in how they express themselves in dialogically structured events that occur between us only in unique, fleeting moments, that we can grasp who and what they are. (…)

In his review of George Steiner's essay ('A new meaning of meaning,' in TLS, 8th Nov, 1985), he comments that such a stance in art, is

"a belief that meaning (or meanings) lies in the work of art, embodied, incarnate, a real presence… It is a faith in meaning incarnate in the work of art that captures the ‘immensity of the commonplace’, that changes our very construction of reality: ‘poplars are on fire after Van Gogh’… The literary artist, it would follow from this argument, becomes an agent in the evolution of mind - but not without the co-option of the reader as his fellow author.”

Crossing boundaries

Almost all of us are now members of more than a single active culture. Thus the experience of having to ‘cross’ cultural boundaries, of having continually to ‘shift one’s stance’, of having to view one’s surroundings, fleeting aspect by fleeting aspect rather than perspectively (Wittgenstein, 1953), to make sense of what is happening around us while being ourselves in ‘motion’, so to speak, has now become a ‘normal’ activity. But what, as academics and intellectuals, must we do in the new dialogical, aspectival circumstances in which we now live, to pay attention to ‘the practices of Self’? Can we just apply our old and well tried methods to this new topic of study? Or must we, if we are to grasp the nature of such practices, invent some new methods, act in some new and different ways? (…)

Milan Kundera's comments - to do with us only very recently coming to a realization of the strangeness of the ordinary, the strangeness of the present moment in all its concreteness - are of crucial importance to us. For presently, as he points out:

"When we analyze a reality, we analyze it as it appears in our mind, in memory. We know reality only in the past tense. We do not know it as it is in the present, in the moment when it’s happening, when it is. The present moment is unlike the memory of it. Remembering is not the negative of forgetting. Remembering is a form of forgetting".

Similarly, Jerome Seymour Bruner (1986, p.13) remarks that what he calls the paradigmatic or logico- scientific mode of thought, "seeks to transcend the particular by higher and higher reaching for abstraction, and in the end disclaims in principle any explanatory value at all where the particular is concerned".

What Kundera and Bruner are reminding us of here, is not only that our current intellectual methods are monological and individualistic, and that as moderns we only really fully alive when set over against our surroundings all alone, but that we also import into our accounts of what happens around us, mythic abstractions of our own making. Positioning ourselves as if observers from afar of someone playing a back and forth, turn taking game - tennis say - we fail to realize that we are the other players in the game, that others act in response to how we act. Lacking any intellectual grasp of the relation of their activity to ours and to the circumstances we share with them, we try to explain what we observe of their activities as if originating solely from within them as self-contained individuals. Ignoring the ‘calls’ of their surrounding circumstances to which they ‘answer’, we invent mythic entities located inside them somewhere that, theoretically, we suppose causes them to act as they do (Wittgenstein, 1953), and set out to prove our theories true. (…)

As I see it, only if we institute a third, dialogical revolution of a kind that calls all our previous methods into question, and suggests wholly new intellectual practices and institutions to us, can we begin to fashion forms of inquiry that will do justice to the uniqueness of the being of Others. (…)

Psychology technicalized and demoralized

In attempting to bring ‘mind’ back into psychology, Bruner didn’t want just to add “a little mentalism” to behaviorism, but to do something much more profound: he wanted to discover and describe "what meaning-making processes were implicated" in people’s encounters with the world; its aim was “to prompt psychology to joining forces with its sister interpretative disciplines in the humanities and the social sciences”.

Indeed, although he admits that "we were slow to fully grasp what the emergence of culture meant for human adaptation and for human functioning" - to contrast with what he calls computationalism - he goes on to outline in this and in his latest book, The Culture of Education), a "second approach to the nature of mind - call it culturalism. It takes its inspiration from the evolutionary fact that mind could not exist save for culture." As he remarks in Acts of Meaning:

"What was obvious from the start was perhaps too obvious to be fully appreciated, at least by us psychologists who by habit and by tradition think in rather individualist terms. The symbolic systems that individual used in constructing meaning were systems that were already in place, already ‘there’, deeply entrenched in culture and language. They constituted a very special kind of communal tool kit whose tools, once used, made the user a reflection of the community… As Clifford Geertz puts it, without the constituting role of culture we are ‘unworkable monstrosities… incomplete or unfinished animals who complete or finish ourselves through culture.”

The ‘movements’ at work in our dialogic encounters with an Other

To refer to issues he has brought to our attention, let me now return to Bruner’s  account of narrative modes of thought in his ‘Two modes…' (…) In the story, Marco Polo tells Kublai Khan of a stone bridge, describing it stone by stone. But Kublai Khan gets impatient and seeks what some of us would now call ‘the bottom line’, and asks what supports the stones? ‘The bridge is not supported by one stone or another,’ Marco answers, ‘but by the line of the arch that they form.’ Then ‘Why do you speak to me of the stones?,’ Kublai Khan demands. ‘Without stones there is no arch,’ Polo replies - for the arch is ‘in’ the relations between the stones. And as Bruner goes on to point out, in their reading of the story, the reader goes from stones to arches to the significance of arches to some broader reality - goes back and forth between them in attempting finally to construct a sense of the story, its form, its meaning. Sometimes in reading stories, we can attend from the relations among their particularities to something much more general. But, what kind of textual structures allow or invite such a move? How is the sense of a more general significance achieved? And ‘in’ what does that more general significance consist?

It is only in our reading of texts of a narrative kind, Bruner maintains, that we can encounter others or othernesses that are strange and novel to us. In reading such texts, individuals begin to construct what Bruner a ‘virtual text’ of their own - where it is as if readers

were embarking on a journey without maps… [Where] in time, the new journey becomes a thing in itself, however much its initial shape was borrowed from the past. The virtual text becomes a story of its own, its very strangeness only a contrast with the reader’s sense of the ordinary… [This] is why the actual text needs the subjunctivity that makes it possible for a reader to create a world of his [or her] own' (Bruner, 1986, pp.36-37).

To repeat: It is the way in which such texts ‘subjunctivize reality’ - or traffic ‘in human possibilities rather than settled certainties,’ as he puts it (Bruner, 1986, p.26) - that makes the co-creation of such virtual worlds between authors and their readers possible. (…)

As he points out, the existence of conventions and maxims that are constitutive of a normative background to our activities, ‘provides us with the means of violating them for purposes of meaning more than we say or for meaning other than what we say (as in irony, for example) or for meaning less than we say (Bruner, 1986, p.26).

This background, and the possibility of us deviating from it, is crucial to his whole approach. Indeed, he emphasizes it again in Acts of Meaning, where he comments on his efforts to describe a people’s ‘folk psychology’ as follows: ‘I wanted to show how human beings, in interacting with one another, form a sense of the canonical and ordinary as a background against which to interpret and give narrative meaning to breaches in and deviations from ‘normal’ states of the human condition' (Bruner, 1990, p.67).

It is the very creation of indeterminacy and uncertainty by the devices people use in their narrative forms of thought and talk, that make it possible for them to co-create unique meanings between them as their dialogical activities unfold. ‘To mean in this way,’ suggests Bruner, ‘by the use of such intended violations… is to create ‘gaps’ and to recruit presuppositions to fill them. Indeed, our own unique responses to our own unique circumstances are ‘carried’ in the subtle variations in how we put these constitutive forms of response to use, as we bodily react, and thus relate ourselves, to what goes on around us. This is what it is for us to perform meaning. And we ‘show’ our understanding of such ‘performed meanings’ in our ways of ‘going on’ with the others around us in practice - to put the matter in Wittgenstein’s (1953) terms. I shall call the kind of meaning involved here, that are only intelligible to us against an already existing background of the activities constitutive of our current forms of life, joint, first-time - or only ‘once occurrent’ (Bakhtin, 1993, p.2) - variational meanings, that are expressive of the ‘world’ of an unique ‘it’ or ‘I’. (…)

In exploring the problem of how it is possible to perform meaning in practice, of how, say, the process of intending might work, Wittgenstein suggests that we might feel tempted to say that such a process ‘can do what it is supposed to only by containing an extremely faithful picture of what it intends.’ But having said this much, he goes on to point out:

"That that too does not go far enough, because a picture, whatever it may be, can be variously interpreted; hence this picture too in its turn stands isolated. When one has the picture in view by itself it is suddenly dead, and it is as if something had been taken away from it, which had given it life before… it remains isolated, it does not point outside itself to a reality beyond.

Now one says: ‘Of course, it is not the picture itself that intends, but we who use it to intend something’. But if this intending, this meaning, is in turn something that is done with the picture, then I cannot see why it has to involve a human being. The process of digestion can also be studied as a chemical process, independently of whether it takes place in a living being. We want to say ‘Meaning is surely essentially a mental process, a process of conscious life, not of dead matter’…

And now it seems to us as if intending could not be any process at all, of any kind whatever. - For what we are dissatisfied with here is the grammar of process, not with the specific kind of process. - It could be said: we should call any process ‘dead’ in this sense’ (no. 236). ‘It might almost be said,’ he adds: 'Meaning moves, whereas a process stands still”.

Meaning as movement

In other words, instead of meaning being a cognitive process of statically ‘picturing’ something, Wittgenstein sees it here in a quite different light: as part of an ongoing, dynamic, interactive process in which people as embodied agents are continuously reacting in a living, practical way, both to each other and to their circumstances.

Thus, even as a person is speaking, the bodily and facial responses of the others around them to what they say, are acting back upon them to influence them moment by moment in their ‘shaping’ of their talk as it unfolds. In such circumstances as these, we are inevitably doing much more than merely talking ‘about’ something; we are continuously living out changing ‘ways of relating’ ourselves to our circumstances, of our own creation; or as Wittgenstein (1953) would say, we are creating certain, particular ‘forms of life’.

Thus, in practice, as we tack back and forth between the particular words of a strange, newly encountered, meaning- indeterminate story or text, and the whole of the already ongoing, unsayable, dynamic cultural history in which we all are, in different ways, to some extent, immersed, we perform meaning. In so doing, in ‘bridging the gaps’ with the responsive movements we make as we read, we creatively ‘move’ over what Bruner (1986) calls the ‘landscapes’ of a ‘virtual text.’ And what is general in our reading, what we can ‘carry over’ from what we do as we read into the doing of other activities, are these responsive ‘ways of moving’ of our own spontaneous creation - ways of ‘orchestrating’ our moment by moment changing relations to our past, our future, the others around us, our immediate physical surroundings, authorities, our cultural history, our dreams for the future, and so on, relating ourselves in these different directions perceptually, cognitively, in action, in memory, and so on (Vygotsky, 1978, 1986). We can ‘carry over’ into new spheres of activity what is ‘carried in’ our initial ways of bodily responding to a text in the first place.

Viewed in this way, as calling out from us possibly quite new, first-time responsive movements, rather than as being about something in the world, such meaning indeterminate texts can be seen as a special part of the world, an aspect of our surroundings to which we cannot not - if we are to grasp their meaning for us - relate ourselves in a living way. So, although such texts may seem to be not too different from those presented as being ‘about’ something - that is, from texts with a representational-referential meaning that ‘pictures’ a state of affairs in the world - their meaning cannot be found in such a picturing. We must relate ourselves to them in a quite different way.

For their meaning is of a much more practical, pre-theoretical, pre-conceptual kind: to do with providing us with way or style of knowing, rather than with a knowledge or ‘picture’ of something in particular. To put it another way: in its reading, such texts are exemplary for not of a certain way of going on. It is exemplary for a new way of relating ourselves to our circumstances not before followed; it provides us with new poetic images through which, possibly, to make sense of things, not images or representations of things already in existence.

Concerning the creative effects of certain styles or genres of writing on us, or works of art in general, Susan Sontag (1962) has written:

To become involved with a work of art entails, to be sure, the experience of detaching oneself from the world. But the work of art itself is also a vibrant, magical, and exemplary object which returns us to the world in some way more open and enriched…

Raymond Bayer has written: ‘What each and every aesthetic object imposes on us, in appropriate rhythms, is a unique and singular formula for the flow of our energy… Every work of art embodies a principle of proceeding, of stopping, of scanning; an image of energy or relaxation, the imprint of a caressing or destroying hand which is [the artist’s] alone’. We can call this the physiognomy of the work, or its rhythm, or, as I would rather do, its style (p.28).

Where the function of such a ‘moving’ form of communication is, not only to make a unique other or otherness we have not previously witnessed, present to us for the very first time, but to provide us with the opportunity to embody the new ‘way of going on’ that only it can call out from us. But to do this, to come to embody its ‘way’, we must encounter and witness its distinct nature in all its complex detail. If we turn too quickly merely to its explanation, not only do we miss what new it can teach us, but the turn is pointless: for, literally, we do not yet know what we are talking about.

As this stance toward meaning as living, only once occurrent, joint, variational movement, is still very unfamiliar to us, let me explore its nature yet a little more: Remarking further about the living nature of meaning, Wittgenstein (1981) comments that he wants to say that When we mean something, it’s like going up to someone, it’s not having a dead picture (of any kind)’. We go up to the thing we mean (Wittgenstein, 1953, no.455).

For instance, as we view, say, a picture such as Van Gogh's Sunflowers, we can enter into an extended, unfolding, living relation with it, one that ebbs and flows, that vacillates and oscillates, as we respond to it in different ways. What we sense, we sense from inside our relations to it: ‘It is as if at first we looked at a picture so as to enter into it and the objects in it surrounded us like real ones; and then we stepped back, and were now outside it; we saw the frame and the picture was a painted surface. In this way, when we intend, we are surrounded by our intention’s pictures, and we are inside them' (1981, no.233).

Indeed, he says elsewhere: It often strikes is as if in grasping meaning the mind made small rudimentary movements, like someone irresolute who does not know which way to go - i.e., it tentatively reviews the field of possible applications (Wittgenstein, 1981, no.33).

The novelist John Berger (1979) has also written about the act of writing in a similar fashion:

The act of writing is nothing except the act of approaching the experience written about; just as, hopefully, the act of reading the written text is a comparable act of approach. To approach experience, however, is not like approaching a house. ‘Life’, as the Russian proverb says, ‘is not a walk across an open field’. Experience is indivisible and continuous, at least within a single lifetime and perhaps over many lifetimes. I never have the impression that my experience is entirely my own, and it often seems to me that it preceded me. In any case experience folds back on itself, refers backwards and forwards to itself through the referents of hope and fear; and, by the use of metaphor, which is at the origin of language, it is continually comparing like with unlike, what is small with what is large, what is near with what is distant. And the act of approaching a given moment of experience involves both scrutiny (closeness) and the capacity to connect (distance).

The movement of writing resembles that of a shuttle on a loom: repeatedly it approaches and withdraws, closes in and takes its distance. Unlike a shuttle, however, it is not fixed to a static frame. as the movement of writing itself, its intimacy with the experience increases. Finally, if one is fortunate, meaning is the fruit of this intimacy.” (John Berger, 1979, p.6, my emphases).

(…)

Describing (and explaining?) the dialogical: ‘the difficulty here is: to stop’

Although such a way of looking for the fleeting, only once occurrent details of our interactions is not easy to implement, it is of the crux. For, as he puts it, the problems we face are not empirical problems to be solved by giving explanations: ‘they are solved, rather, by looking into the workings of our language, and that in such a way as to make us recognize those workings: in spite of an urge to misunderstand them. The problems are solved, not by giving new information, but by arranging what we have already known (no.109) - but which so far, has passed us by in our everyday dealings with each other unnoticed.

Thus, as Wittgenstein (1953) sees it, although not easily accomplished, the task is not to imagine, and then to empirically investigate possible ‘mechanisms’ within us responsible for us being able to mean things to each other, but to describe how we in fact do do it in practice. Indeed, to repeat Kundera’s (1993) remark above:an event as we imagine it hasn’t much to do with the same event as it is when it happens (p.139) - for we can only theorize events as distinct upon their completion, after they have made one or another kind of sense, once they have an already achieved meaning. Something incomplete, something that we are still in the middle of, something that we are still involved in or ‘inside of’, cannot properly be described in a theoretically distinct way.

Thus, if we still nonetheless attempt to do so, we will miss out - or better, we will tend to overlook - many of its most significant details; and in so doing, we will find ourselves puzzled as to how we do in fact manage the doing of meaning between us. There must - we will say to each other - be something else that we have missed, something hidden in what we do when we mean things to each other, that needs discovering and explaining. But, suggests Wittgenstein (1953), in asking and answering his own question: ‘How do sentences do it [i.e., manage to represent something]? - Don’t you know? For nothing is hidden”. (…) There are countless kinds: countless different kinds of use of what we call ‘symbols’, ‘words’, ‘sentences’. And this multiplicity is not something fixed, given once for all; but types of language, new language-games, as we say, come into existence, and others become obsolete and get forgotten.

Once we go beyond the confines of established language-games, we are once again in the realm of the indeterminate, where are meanings are ambiguous and can only be made determinate by us ‘playing them out’, so to speak, within a practice. Our language-games cannot themselves be explained, as they are the bases in terms of which all our explanations in fact work as explanations. (…)

Instead of a theoretical, explanatory account of their workings, we need first to come to a practical understanding of the joint, dialogical nature of our lives together. And if we are to do that, if we are to see, as Bruner puts it, the ways in which we ‘violate’ the norms of our institutions, then, we also must violate the norms of our institutions.”

John Shotter, Emeritus Professor of Communication in the Department of Communication, University of New Hampshire, Towards at third revolution in psychology: From inner mental representation to dialogical social practices

See also:

The Relativity of Truth - a brief résumé, Lapidarium
Map–territory relation - a brief résumé, Lapidarium

Sep
28th
Tue
permalink

The Story of Networks


                                                  (Illustration: Creative Networking)

“The same mathematics of networks that governs the interactions of molecules in a cell, neurons in a brain, and species in an ecosystem can be used to understand the complex interconnections between people, the emergence of group identity, and the paths along which information, norms, and behavior spread from person to person to person.”

James Fowler answering the question "If you only had a single statement to pass on to others summarizing the most vital lesson to be drawn from your work, what would it be?" in Starting Over, SEED, Aprill 22, 2011.

Seven Bridges of Königsberg

“It all starts in Königsberg, now Kalingrad, a small strip of Russian territory. In the 18th century, the philosopher Immanuel Kant, lived there and was famous for taking walks so regularly that it was said that people could set their clocks by him.

Most likely, on these walks, he would encounter one of its seven famous bridges.

                   
When Kant was still a young boy, the bridges had become the center of a popular riddle: Is it possible to walk across all seven bridges without crossing the same one twice? It was an enigma that defied an easy solution until it caught the eye of the Leonhard Euler, the greatest mathematician of that age.

To solve the Königsberg bridge problem, Euler developed a new type of mathematics called graph theory. He designated the four land masses that the bridges connected as nodes and the bridges themselves as links.

                                     

From there it was fairly easy to see that the only way someone could walk across all the bridges only once would be if there were an even number of bridges. It was a nice trick, but at the time, nobody realized how important Euler’s invention of graph theory would become.

Random Networks

One of the people who got interested in graphs was Paul Erdős.

Erdős was famous for showing up at mathematicians doors and announcing “my brain is open” (meaning that he was ready to collaborate). He did this so often, that mathematicians often rank themselves by their Erdős number, or how many links away they are from collaborating with him.

What Erdős realized is that if networks develop randomly, they are highly efficient. Even with a lot of nodes, you need relatively few links. Moreover, the larger the network, the less links you need, proportionately, to connect everything together.

The Milgram Small World Experiment: 6 Degrees of Separation

In 1967, the psychologist Stanley Milgram randomly selected people living in Wichita, Kansas and Omaha, Nebraska and asked them to get a letter to a stockbroker in Boston they had never met. This became known as the small world experiment.

The subjects were given no information except the man’s name and occupation and were only allowed to send the package to people they knew on a first name basis. Amazingly, the letters got there in about six steps on average. Just six relationships separated people across an entire continent!

(More modern e-mail experiments have confirmed most of Milgram’s findings).

Just as Erdős predicted, even in the huge network of people comprising the entire USA, it took an amazingly small amount of links to connect them all. There seemed to be mysterious forces at work that bind disparate parts into a coherent whole.

The Strength of Weak Ties

Mark Granovetter, a sociologist, was aware of Milgram’s work and decided to study the matter further. In the late 1960’s and Early 1970’s, he began studying how people found jobs in communities around Boston.

He soon found that successful job searches revolved around a strange combination of acquaintance and chance. Granovetter found that over 80% of the people in his study who found a job through a contact did not have a close relationship with that person.

Our friends have a lot more friends than we do, so we’ll often find what we’re looking for through the friends of our friends (besides, we share so much of our experiences with those close to us that they tend to have the same information we do). Granovetter called this phenomenon, The Strength of Weak Ties (pdf).”

The Story of Networks, Digital Tonto, Sep 26, 2010

From mapping systems to controlling them


A Universe of Hubs: Mauro Martino, of Barabasi’s lab, illustrates how hubs act as an organizing principle within complex networks by plotting the 325,729 Web pages in the University of Notre Dame Web domain [green points]. He also mapped the 1,497,134 links that connect those pages [white lines]; for clarity, he showed only the strongest connections. Pages with many connections are hubs. Less-connected nodes cluster around them like planets gather around a star Mauro Martino/Barabási Lab

"In 1736 the Swiss mathematician Leonhard Euler ended a debate among the citizens of Königsberg, Prussia, by drawing a graph. The Pregel River divided the city, now Kaliningrad, Russia, into four sections. Seven bridges connected them. Could a person cross all seven without walking over the same one twice?

Euler began with a map that cleared away everything—the homes and streets and coffeehouses—irrelevant to the question at hand. Then he translated that map into something even more abstract, a depiction not of a physical place but of an interconnected system. The four sections became dots, and the seven bridges became lines. By transforming Königsberg into simple nodes and edges (as mathematicians have come to call such abstractions), Euler could subject the system to mathematical analysis. In doing so, he proved that a person could not cross all seven bridges without walking over the same one twice. More important, he mapped a network for the first time.

Over the next two centuries, scientists built on Euler’s work to develop graph theory, a branch of mathematics that would eventually serve as the basis for network science. But it wasn’t until 1959—when the Hungarian mathematicians Paul Erdös and Alfréd Rényi proposed a means by which complex networks evolve—that a defined theory of networks began to emerge. And it was only in the mid-1990s that scientists began to apply that theory to really complex problems. Before then, large data sets were difficult to obtain and even more difficult to process. But as data became more accessible and processing power cheaper, researchers began applying graph theory to everything from protein interactions to the workings of the power grid.

Albert-László Barabási a Romanian-born physicist at the University of Notre Dame, was one of those researchers. In the past decade and a half, has transformed the way his colleagues understand networks at least twice. His theories have influenced important developments in engineering, marketing, medicine and spycraft. And his research may soon allow engineers, marketers, doctors and spies to not just understand and predict network behavior, but also to control it. (…)

Barabási mapped several other large and complex systems, including the connections between transistors on computer chips and the collaborations between actors in Hollywood. In each case, highly linked nodes, which he called hubs, were the defining characteristic of the network, not just an anomaly but an organizing principle for engineered and natural systems alike. With his student Réka Albert, Barabási updated the Erdős–Rényi model to reflect the existence of hubs in real-world networks. In doing so, he created a tool for scientists to map and explore all manner of complex systems in ways they had never thought to before. (…)

Engineers use control theory to predict how systems will respond to various inputs, which in turn helps them make robots that can catch baseballs, cars that take sharp corners with ease, and planes that don’t fall from the sky. (…)

Like prediction, control required evaluating an object as a system with nodes of varying importance. A car for instance: “It is made of 5,000 components,” Barabási says, “yet you as a driver have access to only three to five nodes”—the steering wheel, the gas pedal, the brake, and maybe the clutch and shifter. “With those three to five knobs, you can make this system go anywhere a car can go.” What he wanted to know was if he could look at any network, not just engineered ones, and find those control nodes. Among the thousands of proteins operating within a cell, could he find the steering wheel, the gas pedal and the brake? (…)

Control nodes take instructions or signals from outside the network (for example, a foot on the gas pedal) and transmit them to nodes within the network (the fuel-injection system). To find them, Liu borrowed an algorithm, developed by Erdös and Rényi five decades prior, that acts as a signal moving through the network. It starts at one node and follows a random edge to another node, at which point it “erases” every other edge but the one it came in on and the one it will go out on. The algorithm runs through the entire network over and over until it finds the minimum set of starting points needed to reach every node in the system. Control these starting points, and you control the entire network. (…)

Whereas the neuronal map of C. elegansis complete, scientists have determined only about 5 percent of the connections in the yeast cell’s gene network. The more data scientists feed into the model, the better they can map connections in the network and the fewer control nodes they might need to operate the system. “We know these maps are incomplete,” Barabási says. “But they’re getting richer every day.” He also says his theory applies to total control of a network. Scientists who want partial control—say, to elicit a particular protein expression within a cell—would need to master far fewer nodes. (…)

“What we have to realize is that control is a natural progression of understanding processes,” he says. “But control is a question of will, and will can be controlled by laws. We have to come together as a society to figure out how far we can push it.”

Gregory Mone, This Man Could Rule the World - How Albert-László Barabási went from mapping systems to controlling them, 11.02.2011.

The hidden influence of social networks: Nicholas Christakis on TED.com

"We’re all embedded in vast social networks of friends, family, co-workers and more. Nicholas Christakis tracks how a wide variety of traits — from happiness to obesity — can spread from person to person, showing how your location in the network might impact your life in ways you don’t even know.”

Nicholas Christakis, Greek American physician and sociologist known for his research on social networks and on the socioeconomic and biosocial determinants of health, longevity, and behavior. Speech at TED2010, February 2010 in Long Beach, CA.

Manuel Lima: The Power of Networks. Mapping an increasingly complex world | TED

Manuel Lima is a Fellow of the Royal Society of Arts, nominated by Creativity magazine as “one of the 50 most creative and influential minds of 2009”, Manuel Lima is a Senior UX Design Lead at Microsoft Bing and founder of VisualComplexity.com - A visual exploration on mapping complex networks. TEDxBuenosAires, April 2011

The Power of Networks — Animated by RSA

See also:

☞ C. J. Stam, J. C. Reijneveld, Graph theoretical analysis of complex networks in the brain, Nonlinear Biomedical Physics, 2007 (research paper)

"Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the ‘synchronizability’ of complex networks of coupled oscillators can be determined by graph spectral analysis.

These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity.

This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer’s disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern.”

Nicholas Christakis: How social networks predict epidemics, TED video, June 2010
Minority rules: Scientists discover tipping point for the spread of ideas
The ‘rich club’ that rules your brain
☞ Eshel Ben-Jacob, Learning from Bacteria about Social Networks, Google Tech Talk, Sept 30, 2011 Video
Genes and social networks: new research links genes to friendship networks
☞ Manuel Castells, Network Theories of Power - video lecture, USCAnnenberg
Networks tag on Lapidarium