Lapidarium notes RSS

Amira Skomorowska's notes

"Everything you can imagine is real."— Pablo Picasso

Lapidarium

Tags:

Africa
Age of information
Ancient
Anthropology
Art
Artificial intelligence
Astronomy
Atheism
Beauty
Biography
Books
China
Christianity
Civilization
Cognition, perception, relativity
Cognitive science
Collective intelligence
Communication
Consciousness
Creativity
Culture
Curiosity
Cyberspace
Democracy
Documentary
Drawing
Earth
Economy
Evolution
Friendship
Funny
Future
Genetics
Globalization
Happiness
History
Human being
Illustrations
Imagination
Individualism
Infographics
Information
Inspiration
Internet
Knowledge
Language
Learning
Life
Literature
Logic
Love
Mathematics
Media
Metaphor
Mind & Brain
Multiculturalism
Music
Networks
Neuroscience
Painting
Paradoxes
Patterns
Philosophy
Poetry
Politics
Physics
Psychology
Rationalism
Religions
Science
Science & Art
Self improvement
Semantics
Society
Sociology
Storytelling
Technology
The other
Time
Timeline
Traveling
Unconsciousness
Universe
USA
Video
Violence
Visualization


Homepage
Twitter
Facebook

A Box Of Stories
Reading Space

Contact

Archive

Nov
1st
Fri
permalink

Bill Gates: ‘If you think connectivity is the key thing, that’s great. I don’t. The world is not flat and PCs are not, in the hierarchy of human needs’


The internet is not going to save the world, whatever Mark Zuckerberg and Silicon Valley’s tech billionaires believe. (…) But eradicating disease just might.

Bill Gates describes himself as a technocrat. But he does not believe that technology will save the world. Or, to be more precise, he does not believe it can solve a tangle of entrenched and interrelated problems that afflict humanity’s most vulnerable: the spread of diseases in the developing world and the poverty, lack of opportunity and despair they engender. “I certainly love the IT thing,” he says. “But when we want to improve lives, you’ve got to deal with more basic things like child survival, child nutrition.

These days, it seems that every West Coast billionaire has a vision for how technology can make the world a better place. A central part of this new consensus is that the internet is an inevitable force for social and economic improvement; that connectivity is a social good in itself. It was a view that recently led Mark Zuckerberg to outline a plan for getting the world’s unconnected 5 billion people online, an effort the Facebook boss called “one of the greatest challenges of our generation”. But asked whether giving the planet an internet connection is more important than finding a vaccination for malaria, the co-founder of Microsoft and world’s second-richest man does not hide his irritation: “As a priority? It’s a joke.

Then, slipping back into the sarcasm that often breaks through when he is at his most engaged, he adds: “Take this malaria vaccine, [this] weird thing that I’m thinking of. Hmm, which is more important, connectivity or malaria vaccine? If you think connectivity is the key thing, that’s great. I don’t.” (…)

Gates says now. “The world is not flat and PCs are not, in the hierarchy of human needs, in the first five rungs.” (…)

To Diamandis’s argument that there is more good to be done in the world by building new industries than by giving away money, meanwhile, he has a brisk retort: “Industries are only valuable to the degree they meet human needs. There’s not some – at least in my psyche – this notion of, oh, we need new industries. We need children not to die, we need people to have an opportunity to get a good education.” (…)

Gates describes himself as a natural optimist. But he admits that the fight with the US government seriously challenged his belief that the best outcome would always prevail. With a typically generalising sweep across history, he declares that governments have “worked pretty well on balance in playing their role to improve the human condition” and that in the US since 1776, “the government’s played an absolutely central role and something wonderful has happened”. But that doesn’t settle his unease.

“The closer you get to it and see how the sausage is made, the more you go, oh my God! These guys don’t even actually know the budget. It makes you think: can complex, technocratically deep things – like running a healthcare system properly in the US in terms of impact and cost – can that get done? It hangs in the balance.”

It isn’t just governments that may be unequal to the task. On this analysis, the democratic process in most countries is also straining to cope with the problems thrown up by the modern world, placing responsibilities on voters that they can hardly be expected to fulfil. “The idea that all these people are going to vote and have an opinion about subjects that are increasingly complex – where what seems, you might think … the easy answer [is] not the real answer. It’s a very interesting problem. Do democracies faced with these current problems do these things well?.”

An exclusive interview with Bill Gates, The Financial Times, Nov 1, 2013, Photo

Jan
22nd
Tue
permalink

Kevin Slavin: How algorithms shape our world

“But the Turing test cuts both ways. You can’t tell if a machine has gotten smarter or if you’ve just lowered your own standards of intelligence to such a degree that the machine seems smart. If you can have a conversation with a simulated person presented by an AI program, can you tell how far you’ve let your sense of personhood degrade in order to make the illusion work for you?

People degrade themselves in order to make machines seem smart all the time. Before the crash, bankers believed in supposedly intelligent algorithms that could calculate credit risks before making bad loans. We ask teachers to teach to standardized tests so a student will look good to an algorithm. We have repeatedly demonstrated our species’ bottomless ability to lower our standards to make information technology look good. Every instance of intelligence in a machine is ambiguous.

The same ambiguity that motivated dubious academic AI projects in the past has been repackaged as mass culture today. Did that search engine really know what you want, or are you playing along, lowering your standards to make it seem clever? While it’s to be expected that the human perspective will be changed by encounters with profound new technologies, the exercise of treating machine intelligence as real requires people to reduce their mooring to reality.”

Jaron Lanier, You are Not a Gadget (2010)

Kevin Slavin argues that we’re living in a world designed for — and increasingly controlled by — algorithms. In this riveting talk from TEDGlobal, he shows how these complex computer programs determine: espionage tactics, stock prices, movie scripts, and architecture.

"We’re writing things (…) that we can no longer read. And we’ve rendered something illegible, and we’ve lost the sense of what’s actually happening in this world that we’ve made. (…)

“We’re running through the United States with dynamite and rock saws so that an algorithm can close the deal three microseconds faster, all for a communications framework that no human will ever know; that’s a kind of manifest destiny.”

Kevin Slavin, Entrepreneur, Raconteur Assistant Professor of Media Arts and Sciences, MIT Media Lab, Kevin Slavin: How algorithms shape our world, TED, July 2011.

See also:

☞ Jane Wakefield, When algorithms control the world, BBC, Aug 23, 2011.

Jul
24th
Tue
permalink

Dirk Helbing on A New Kind Of Socio-inspired Technology

The big unexplored continent in science is actually social science, so we really need to understand much better the principles that make our society work well, and socially interactive systems. Our future information society will be characterized by computers that behave like humans in many respects. In ten years from now, we will have computers as powerful as our brain, and that will really fundamentally change society. Many professional jobs will be done much better by computers. How will that change society? How will that change business? What impacts does that have for science, actually?

There are two big global trends. One is big data. That means in the next ten years we’ll produce as many data, or even more data than in the past 1,000 years. The other trend is hyperconnectivity. That means we have networking our world going on at a rapid pace; we’re creating an Internet of things. So everyone is talking to everyone else, and everything becomes interdependent. What are the implications of that? (…)

But on the other hand, it turns out that we are, at the same time, creating highways for disaster spreading. We see many extreme events, we see problems such as the flash crash, or also the financial crisis. That is related to the fact that we have interconnected everything. In some sense, we have created unstable systems. We can show that many of the global trends that we are seeing at the moment, like increasing connectivity, increase in the speed, increase in complexity, are very good in the beginning, but (and this is kind of surprising) there is a turning point and that turning point can turn into a tipping point that makes the systems shift in an unknown way.

It requires two things to understand our systems, which is social science and complexity science; social science because computers of tomorrow are basically creating artificial social systems. Just take financial trading today, it’s done by the most powerful computers. These computers are creating a view of the environment; in this case the financial world. They’re making projections into the future. They’re communicating with each other. They have really many features of humans. And that basically establishes an artificial society, which means also we may have all the problems that we are facing in society if we don’t design these systems well. The flash crash is just one of those examples that shows that, if many of those components — the computers in this case — interact with each other, then some surprising effects can happen. And in that case, $600 billion were actually evaporating within 20 minutes.

Of course, the markets recovered, but in some sense, as many solid stocks turned into penny stocks within minutes, it also changed the ownership structure of companies within just a few minutes. That is really a completely new dimension happening when we are building on these fully automated systems, and those social systems can show a breakdown of coordination, tragedies of the commons, crime or cyber war, all these kinds of things will happen if we don’t design them right.

We really need to understand those systems, not just their components. It’s not good enough to have wonderful gadgets like smartphones and computers; each of them working fine in separation. Their interaction is creating a completely new world, and it is very important to recognize that it’s not just a gradual change of our world; there is a sudden transition in the behavior of those systems, as the coupling strength exceeds a certain threshold.

A traffic flow in a circle

I’d like to demonstrate that for a system that you can easily imagine: traffic flow in a circle. Now, if the density is high enough, then the following will happen: after some time, although every driver is trying hard to go at a reasonable speed, cars will be stopped by a so-called ‘phantom traffic jam.’ That means smooth traffic flow will break down, no matter how hard the drivers will try to maintain speed. The question is, why is this happening? If you would ask drivers, they would say, “hey, there was a stupid driver in front of me who didn’t know how to drive!” Everybody would say that. But it turns out it’s a systemic instability that is creating this problem.

That means a small variation in the speed is amplified over time, and the next driver has to brake a little bit harder in order to compensate for a delayed reaction. That creates a chain reaction among drivers, which finally stops traffic flow. These kinds of cascading effects are all over the place in the network systems that we have created, like power grids, for example, or our financial markets. It’s not always as harmless as in traffic jams. We’re just losing time in traffic jams, so people could say, okay, it’s not a very serious problem. But if you think about crowds, for example, we have this transition towards a large density of the crowd, then what will happen is a crowd disaster. That means people will die, although nobody wants to harm anybody else. Things will just go out of control. Even though there might be hundreds or thousands of policemen or security forces trying to prevent these things from happening.

This is really a surprising behavior of these kinds of strongly-networked systems. The question is, what implication does that have for other network systems that we have created, such as the financial system? There is evidence that the fact that now every bank is interconnected with every other bank has destabilized the system. That means that there is a systemic instability in place that makes it so hard to control, or even impossible to control. We see that the big players, and also regulators, have large difficulties to get control of these systems.  

That tells us something that we need to change our perspective regarding these systems. Those complex systems are not characterized anymore by the properties of their components. But they’re characterized by what is the outcome of the interactions between those components. As a result of those interactions, self-organization is going on in these systems. New emergent properties come up. They can be very surprising, actually, and that means we cannot understand those systems anymore, based on what we see, which is the components.

We need to have new instruments and tools to understand these kinds of systems. Our intuition will not work here. And that is what we want to create: we want to come up with a new information platform for everybody that is bringing together big data with exa-scale computing, with people, and with crowd sourcing, basically connecting the intelligence of the brains of the world.

One component that is going to measure the state of the world is called the Planetary Nervous System. That will measure not just the physical state of the world and the environmental situation, but it is also very important actually that we learn how to measure social capital, such as trust and solidarity and punctuality and these kinds of things, because this is actually very important for economic value generation, but also for social well-being.

Those properties as social capital, like trust, they result from social network interactions. We’ve seen that one of the biggest problems of the financial crisis was this evaporation of trust. It has burned tens of thousands of billion dollars. If we would learn how to stabilize trust, or build trust, that would be worth a lot of money, really. Today, however, we’re not considering the value of social capital. It can happen that we destroyed it or that we exploit it, such as we’ve exploited and destroyed our environment. If we learn how much is the value of social capital, we will start to protect it. Also we’ll take it into account in our insurance policies. Because today, no insurance is taking into account the value of social capital. It’s the material damage that we take into account, but not the social capital. That means, in some sense, we’re underinsured. We’re taking bigger risks than we should.

This is something that we want to learn, how to quantify the fundaments of society, to quantify the social footprint. It means to quantify the implications of our decisions and actions.

The second component, the Living Earth Simulator will be very important here, because that will look at what-if scenarios. It will take those big data generated by the Planetary Nervous System and allow us to look at different scenarios, to explore the various options that we have, and the potential side effects or cascading effects, and unexpected behaviors, because those interdependencies make our global systems really hard to understand. In many cases, we just overlook what would happen if we fix a problem over here: It might have unwanted side effects; in many cases, that is happening in other parts of our world.

We are using supercomputers today in all areas of our development. Like if we are developing a car, a plane or medical tracks or so, supercomputers are being used, also in the financial world. But we don’t have a kind of political or a business flight simulator that helps us to explore different opportunities. I think this is what we can create as our understanding of society progresses. We now have much better ideas of how social coordination comes about, what are the preconditions for cooperation. What are conditions that create conflict, or crime, or war, or epidemicspreading, in the good and the bad sense?

We’re using, of course, viral marketing today in order to increase the success of our products. But at the same time, also we are suffering from a quick spreading of emerging diseases, or of computer viruses, and Trojan horses, and so on. We need to understand these kinds of phenomena, and with the data and the computer power that is coming up, it becomes within reach to actually get a much better picture of these things.

The third component will be the Global Participatory Platform [pdf]. That basically makes those other tools available for everybody: for business leaders, for political decision-makers, and for citizens. We want to create an open data and modeling platform that creates a new information ecosystem that allows you to create new businesses, to come up with large-scale cooperation much more easily, and to lower the barriers for social, political and economic participation.

So these are the three big elements. We’ll furthermore  build exploratories of society, of the economy and environment and technology, in order to be able to anticipate possible crises, but also to see opportunities that are coming up. Those exploratories will bring these three elements together. That means the measurement component, the computer simulation component, and the participation, the interactiveness.

In some sense, we’re going to create virtual worlds that may look like our real world, copies of our world that allow us to explore polices in advance or certain kinds of planning in advance. Just to make it a little bit more concrete, we could, for example, check out a new airport or a new city quarter before it’s being built. Today we have these architectural plans, and competitions, and then the most beautiful design will have win. But then, in practice, it can happen that it doesn’t work so well. People have to stand in line in queues, or are obstructing each other. Many things may not work out as the architect imagined that.                 

What if we populated basically these architectural plans with real people? They could check it out, live there for some months and see how much they like it. Maybe even change the design. That means, the people that would use these facilities and would live in these new quarters of the city could actually participate in the design of the city. In the same sense, you can scale that up. Just imagine Google Earth or Google Street View filled with people, and have something like a serious kind of Second Life. Then we could have not just one history; we can check out many possible futures by actually trying out different financial architectures, or different decision rules, or different intellectual property rights and see what happens.                 

We could have even different virtual planets, with different laws and different cultures and different kinds of societies. And you could choose the planet that you like most. So in some sense, now a new age is opening up with almost unlimited resources. We’re, of course, still living in a material world, in which we have a lot of restrictions, because resources are limited. They’re scarce and there’s a lot of competition for these scarce resources. But information can be multiplied as much as you like. Of course, there is some cost, and also some energy needed for that, but it’s relatively low cost, actually. So we can create really almost infinite new possibilities for creativity, for productivity, for interaction. And it is extremely interesting that we have a completely new world coming up here, absolutely new opportunities that need to be checked out.

But now the question is: how will it all work? Or how would you make it work? Because the information systems that we have created are even more complex than our financial system. We know the financial system is extremely difficult to regulate and to control. How would you want to control an information system of this complexity? I think that cannot be done top-down. We are seeing now a trend that complex systems are run in a more and more decentralized way. We’re learning somehow to use self-organization principles in order to run these kinds of systems. We have seen that in the Internet, we are seeing t for smart grids, but also for traffic control.

I have been working myself on these new ways of self-control. It’s very interesting. Classically one has tried to optimize traffic flow. It’s so demanding that even our fastest supercomputers can’t do that in a strict sense, in real time. That means one needs to make simplifications. But in principle, what one is trying to do is to impose an optimal traffic light control top-down on the city. The supercomputer believes to know what is best for all the cars, and that is imposed on the system.                 

We have developed a different approach where we said: given that there is a large degree of variability in the system, the most important aspect is to have a flexible adaptation to the actual traffic conditions. We came up with a system where traffic flows control the traffic lights. It turns out this makes much better use of scarce resources, such as space and time. It works better for cars, it works better for public transport and for pedestrians and bikers, and it’s good for the environment as well.                 

The age of social innovation

There’s a new kind of socio-inspired technology coming up, now. Society has many wonderful self-organization mechanisms that we can learn from, such as trust, reputation, culture. If we can learn how to implement that in our technological system, that is worth a lot of money; billions of dollars, actually. We think this is the next step after bio-inspired technology.

The next big step is to focus on society. We’ve had an age of physics; we’re now in an age of biology. I think we are entering the age of social innovation as we learn to make sense of this even bigger complexity of society. It’s like a new continent to discover. It’s really fascinating what now becomes understandable with the availability of Big Data about human activity patterns, and it will open a door to a new future.

What will be very important in order to make sense of the complexity of our information society is to overcome the disciplinary silos of science; to think out of the box. Classically we had social sciences, we had economics, we had physics and biology and ecology, and computer science and so on. Now, our project is trying to bring those different fields together, because we’re deeply convinced that without this integration of different scientific perspectives, we cannot anymore make sense of these hyper-connected systems that we have created.                 

For example, computer science requires complexity science and social science to understand those systems that have been created and will be created. Why is this? Because the dense networking and to the complex interaction between the components creates self-organization, and emergent phenomena in those systems. The flash crash is just one example that shows that unexpected things can happen. We know that from many systems.

Complexity theory is very important here, but also social science. And why is that? Because the components of these information communication systems are becoming more and more human-like. They’re communicating with each other. They’re making a picture of the outside world. They’re projecting expectations into the future, and they are taking autonomous decisions. That means if those computers interact with each other, it’s creating an artificial social system in some sense.                 

In the same way, social science will need complexity science and computer science. Social science needs the data that computer science and information communication technology can provide. Now, and even more in the future, those data traces about human activities allow us eventually to detect patterns and kind of laws of human behavior. It will be only possible through the collaboration with computer science to get those data, and to make sense of what is happening actually in society. I don’t need to mention that obviously there are complex dynamics going on in society; that means complexity science is needed for social science as well.

In the same sense, we could say complexity science needs social science and computer science to become practical. To go a step beyond talking about butterfly effects and chaos and turbulence. And to make sure that the thinking of complexity science will pervade our thinking in the natural engineering and social sciences and allow us to understand the real problems of our world. That is kind of the essence: that we need to bring these different scientific fields together. We have actually succeeded to build up these integrated communities in many countries all over the world, ready to go, as soon as money becomes available for that.        

Big Data is not a solution per se. Even the most powerful machine learning algorithm will not be sufficient to make sense of our world, to understand the principles according to which our world is working. This is important to recognize. The great challenge is to marry data with theories, with models. Only then will we be able to make sense of the useful bits of data. It’s like finding a needle in the haystack. The more data you have, the more difficult it may be to find this needle, actually, to a certain extent. And there is this danger of over-fitting, of being distracted from important details. We are certainly already in an age where we’re flooded with information, and our attention span can actually not process all that information. That means there is a danger that this undermines our wisdom, if our attention is attracted by the wrong details of information. So we are confronted with the problem of finding the right institutions and tools and instruments for decision-making.        

The Living Earth Simulator will basically take the data that is gathered by the Internet, search requests, and created by sensor networks, and feed it into big computer simulations that are based on models of social and economic and technological behavior. In this way, we’ll be able to look at what-if scenarios. We hope to get a better understanding, for example, of financial systems and some answers to controversial questions such as how much leverage effect is good? Under what conditions is ‘naked short-selling’ beneficial? When does it destabilize markets? To what extent is high frequency trading good, or it can it also have side effects? All these kinds of questions, which are difficult to answer. Or how to deal best with the situation in Europe, where we have trouble, obviously, in Greece, but also kind of contagious effects on other countries and on the rest of the financial system. It would be very good to have the models and the data that allow us actually to simulate these kinds of scenarios and to take better-informed decisions. (…)

The idea is to have an open platform to create a data and model commons that everybody can contribute to, so people could upload data and models, and others could use that. People would also judge the quality of the data and models and rate them according to their criteria. And we also point out the criteria according to which they’re doing the rating. But in principle, everybody can contribute and everybody can use it. (…)                            

We have much better theories, also, that allows us to make sense of those data. We’re entering into an age where we can understand society and the economy much better, namely as complex self-organizing systems.           

It will be important to guide us into the future because we are creating very powerful systems. Information society will transform our society fundamentally and we shouldn’t just let it happen. We want to understand how that will change our society, and what are the different pathes that our society may take, and decide for the one that we want it to take. For that, we need to have a much better understanding.

Now a lot of social activity data are becoming available through Facebook and Twitter and Google search requests and so on. This is, of course, a huge opportunity for business. Businesses are talking about the new oil, personal data as new asset class. There’s something like a gold rush going on. That also, of course, has huge opportunities for science, eventually we can make sense of complex systems such as our society. There are different perspectives on this. They range from some people who think that information communication technologies eventually will create a God’s-eye view: systems that make sense of all human activities, and the interactions of people, while others are afraid of a Big Brother emerging.                 

The question is how to handle that situation. Some people say we don’t need privacy in society. Society is undergoing a transformation, and privacy is not anymore needed. I don’t actually share this point of view, as a social scientist, because public and private are two sides of the same coin, so they cannot exist without the other side. It is very important, for a society to work, to have social diversity. Today, we know to appreciate biodiversity, and in the same way we need to think about social diversity, because it’s a motor of innovation. It’s also an important factor for societal resilience. The question now is how all those data that we are creating, and also recommender system and personalized services are going to impact people’s decision-making behavior, and society overall.                 

This is what we need to look at now. How is people’s behavior changing through these kinds of data? How are people changing their behavior when they feel they’re being observed? Europe is quite sensitive about privacy. The project we are working on is actually trying to find a balance between the interest of companies and Big Data of governments and individuals. Basically we want to develop technologies that allow us to find this balance, to make sure that all the three perspectives actually are taken into account. That you can make big business, but also at the same time, the individual’s privacy is respected. That individuals have more control over their own data, know what is happening with them, have influence on what is happening with them. (…)           

In some sense, we want to create a new data and model commons, a new kind of language, a new public good that allows people to do new things. (…)

My feeling is that actually business will be made on top of this sea of data that’s being created. At the moment data is kind of the valuable resource, right? But in the future, it will probably be a cheap resource, or even a free resource to a certain extent, if we learn how to deal with openness of data. The expensive thing will be what we do with the data. That means the algorithms, the models, and theories that allow us to make sense of the data.”

Dirk Helbing, physicist, and professor of sociology at ETH Zurich – Swiss Federal Institute of Technology, in particular for modelling and simulation, A New Kind Of Socio-inspired Technology, Edge Conversation, June 19, 2012. (Illustration: WSF)

See also:

☞ Dirk Helbing, New science and technology to understand and manage our complex world in a more sustainable and resilient way (pdf) (presentation), ETH Zurich
Why does nature so consistently organize itself into hierarchies? Living Cells Show How to Fix the Financial System
Geoffrey West on Why Cities Keep Growing, Corporations and People Always Die, and Life Gets Faster
The Difference Between Online Knowledge and Truly Open Knowledge. In the era of the Internet facts are not bricks but networks
Networks tag on Lapidarium notes

May
17th
Thu
permalink

E. O. Wilson on human evolution, altruism and a ‘new Enlightenment’

                image      

“History makes no sense without prehistory, and prehistory makes no sense without biology.”

— E. O. Wilson, Seminars About Long-term Thinking, The Long Now Foundation, Apr 20, 2012.

"Scientific advances are now good enough for us to address coherently questions of where we came from and what we are. But to do so, we need to answer two more fundamental questions. The first is why advanced social life exists in the first place and has occurred so rarely. The second is what are the driving forces that brought it into existence.

A conflict between individual and group-selected traits

"Only the understanding of evolution offers a chance to get a real understanding of the human species. We are determined by the interplay between individual and group selection where individual selection is responsible for much of what we call sin, while group selection is responsible for the greater part of virtue. We’re all in constant conflict between self-sacrifice for the group on the one hand and egoism and selfishness on the other. I go so far as to say that all the subjects of humanities, from law to the creative arts are based upon this play of individual versus group selection. (…) And it is very creative and probably the source of our striving, our inventiveness and imagination. It’s that eternal conflict that makes us unique.

Q: So how do we negotiate this conflict?

E O. W: We don’t. We have to live with it.

Q: Which element of this human condition is stronger?

E O. W: Let’s put it this way: If we would be mainly influenced by group selection, we would be living in kind of an ant society. (…)

Q: What determines which ideology is predominant in a society?

E O. W: If your territory is invaded, then cooperation within the group will be extreme. That’s a human instinct. If you are in a frontier area, however, then we tend to move towards the extreme individual level. That seems to be a good part of the problem still with America. We still think we’re on the frontier, so we constantly try to put forward individual initiative and individual rights and rewards based upon individual achievement. (…)”

Edward O. Wilson, American biologist, researcher (sociobiologybiodiversity), theorist (consiliencebiophilia), naturalist (conservationist) and author, Interview with Edward O. Wilson: The Origin of Morals, Der Spiegel, 2013

Eusociality, where some individuals reduce their own reproductive potential to raise others’ offspring, is what underpins the most advanced form of social organization and the dominance of social insects and humans. One of the key ideas to explain this has been kin selection theory or inclusive fitness, which argues that individuals cooperate according to how they are related. I have had doubts about it for quite a while. Standard natural selection is simpler and superior. Humans originated by multilevel selection—individual selection interacting with group selection, or tribe competing against tribe. We need to understand a great deal more about that. (…)

We should consider ourselves as a product of these two interacting and often competing levels of evolutionary selection. Individual versus group selection results in a mix of altruism and selfishness, of virtue and sin, among the members of a society. If we look at it that way, then we have what appears to be a pretty straightforward answer as to why conflicted emotions are at the very foundation of human existence. I think that also explains why we never seem to be able to work things out satisfactorily, particularly internationally.

Q: So it comes down to a conflict between individual and group-selected traits?

Yes. And you can see this especially in the difficulty of harmonizing different religions. We ought to recognize that religious strife is not the consequence of differences among people. It’s about conflicts between creation stories. We have bizarre creation myths and each is characterized by assuring believers that theirs is the correct story, and that therefore they are superior in every sense to people who belong to other religions. This feeds into our tribalistic tendencies to form groups, occupy territories and react fiercely to any intrusion or threat to ourselves, our tribe and our special creation story. Such intense instincts could arise in evolution only by group selection—tribe competing against tribe. For me, the peculiar qualities of faith are a logical outcome of this level of biological organization.

Q: Can we do anything to counter our tribalistic instincts?

I think we are ready to create a more human-centered belief system. I realize I sound like an advocate for science and technology, and maybe I am because we are now in a techno-scientific age. I see no way out of the problems that organized religion and tribalism create other than humans just becoming more honest and fully aware of themselves. Right now we’re living in what Carl Sagan correctly termed a demon-haunted world. We have created a Star Wars civilization but we have Paleolithic emotions, medieval institutions and godlike technology. That’s dangerous. (…)

I’m devoted to the kind of environmentalism that is particularly geared towards the conservation of the living world, the rest of life on Earth, the place we came from. We need to put a lot more attention into that as something that could unify people. Surely one moral precept we can agree on is to stop destroying our birthplace, the only home humanity will ever have.

Q: Do you believe science will help us in time?

We can’t predict what science is going to come up with, particularly on genuine frontiers like astrophysics. So much can change even within a single decade. A lot more is going to happen when the social sciences finally join the biological sciences: who knows what will come out of that in terms of describing and predicting human behavior? But there are certain things that are almost common sense that we should not do.

Q: What sort of things shouldn’t we do?

Continue to put people into space with the idea that this is the destiny of humanity. It makes little sense to continue exploration by sending live astronauts to the moon, and much less to Mars and beyond. It will be far cheaper, and entail no risk to human life, to explore space with robots. It’s a commonly stated idea that we can have other planets to live on once we have used this one up. That is nonsense. We can find what we need right here on this planet for almost infinite lengths of time, if we take good care of it.

A New Enlightenment

Q: What is it important to do now?

The title of my final chapter is “A New Enlightenment”. I think we ought to have another go at the Enlightenment and use that as a common goal to explain and understand ourselves, to take that self-understanding which we so sorely lack as a foundation for what we do in the moral and political realm. This is a wonderful exercise. It is about education, science, evaluating the creative arts, learning to control the fires of organized religion and making a better go of it.

Q: Could you be more concrete about this new Enlightenment?

I would like to see us improving education worldwide and putting a lot more emphasis—as some Asian and European countries have—on science and technology as part of basic education.”

E. O. Wilson, E. O. Wilson: from altruism to a new Enlightenment, New Scientist, 24 April 2012.

"I think science is now up to the job. We need to be harnessing our scientific knowledge now to get a better, science-based self-understanding.

Q: It seems that, in this process, you would like to throw religions overboard altogether?

E O. W: No. That’s a misunderstanding. I don’t want to see the Catholic Church with all of its magnificent art and rituals and music disappear. I just want to have them give up their creation stories, including especially the resurrection of Christ.

Q: That might well be a futile endeavour …

E O. W: There was this American physiologist who was asked if Mary’s bodily ascent from Earth to Heaven was possible. He said, “I wasn’t there; therefore, I’m not positive that it happened or didn’t happen; but of one thing I’m certain: She passed out at 10,000 meters.” That’s where science comes in. Seriously, I think we’re better off with no creation stories.

Q: With this new Enlightenment, will we reach a higher state of humanity?

E O. W: Do we really want to improve ourselves? Humans are a very young species, in geologic terms, and that’s probably why we’re such a mess. We’re still living with all this aggression and ability to go to war. But do we really want to change ourselves? We’re right on the edge of an era of being able to actually alter the human genome. But do we want that? Do we want to create a race that’s more rational and free of many of these emotions? My response is no, because the only thing that distinguishes us from super-intelligent robots are our imperfect, sloppy, maybe even dangerous emotions. They are what makes us human.”

Edward O. Wilson, American biologist, researcher (sociobiologybiodiversity), theorist (consiliencebiophilia), naturalist (conservationist) and author, Interview with Edward O. Wilson: The Origin of Morals, originally in P. Bethge, J. Grolle, Wir sind ein Schlamassel, Der Spiegel, 8/2013.

A “Social Conquest of the Earth”

"Q: What are some striking examples for you of the legacy of this evolutionary process?

Almost everything. All the way from passion at football games to war to the constant need to suppress selfish behavior that ranges over into criminal behavior to the necessary extolling of altruism by groups, to group approval and reward of people who are heroes or altruists.

Constant turmoil occurs in modern human societies and what I’m suggesting is that turmoil is endemic in the way human advanced social behavior originated in the first place. It’s by group selection that occurred favoring altruism versus individual level selection, which by and large, not exclusively, favor individual and selfish behavior.

We’re hung in the balance. We’ll never reach either one extreme or the other. One extreme would take us to the level of ants and bees and the other would mean that you have dissolution of society.

Q: One point you make in your book is that this highly social kind of behavior that we’ve evolved has allowed us to be part of the social conquest of earth, but it’s also had an unfortunate effect of endangering a lot of the world’s biodiversity. Does that make you pessimistic? If this is just part of the way we’ve evolved, is there going to be any way out of it?

That’s a very big question. In other words, did the pathway that led us to advanced social behavior and conquest make it inevitable that we will destroy most of what we’ve conquered? That is the question of questions.

I’m optimistic. I think that we can pass from conquerors to stewards. We have the intellectual and moral capacity to do it, but I’ve also felt very strongly that we needed a much better understanding of who we are and where we came from. We need answers to those questions in order to get our bearings toward a successful long-term future, that means a future for ourselves, our species and for the rest of life.

I realize that sounds a little bit like it’s coming from a pulpit but basically that’s what I’ve had in my mind. In writing A Social Conquest of Earth, I very much had in mind that need for self-understanding, and I thought we were very far short, and we remain very far short, of self-understanding. We have a kind of resistance toward honest self-understanding as a species and I think that resistance is due in part to our genetic history. And now, can we overcome it? I think so.”

E. O. Wilson, American biologist, researcher in sociobiology, biodiversity, theorist, naturalist and author, interviewed by Carl Zimmer, What Does E.O. Wilson Mean By a “Social Conquest of the Earth”, Smithsonian.com, March 22, 2012

See also:

Edward O. Wilson “The Social Conquest of Earth”, Fora.tv video, 20 Apr 2012
☞ Richard Dawkins, The descent of Edward Wilson. “A new book on evolution by a great biologist makes a slew of mistakes”, Prospect, May 24, 2012
The Original Colonists, The New York Times, May 11, 2012:
“Mythmaking could never discover the origin and meaning of humanity” — and contemporary philosophy is also irrelevant, having “long ago abandoned the foundational questions about human existence.” The proper approach to answering these deep questions is the application of the methods of science, including archaeology, neuroscience and evolutionary biology. Also, we should study insects.”
Sam Harris on the ‘selfish gene’ and moral behavior
Anthropocene: “the recent age of man”. Mapping Human Influence on Planet Earth, Lapidarium notes
Human Nature. Sapolsky, Maté, Wilkinson, Gilligan, discuss on human behavior and the nature vs. nurture debate
On the Origins of the Arts , Sociobiologist E.O. Wilson on the evolution of culture, Harvard Magazine, May-June, 2013
Anthropology tag on Lapidarium notes
May
5th
Sat
permalink

The Paradox of Contemporary Cultural History. We are clinging as never before to the familiar in matters of style and culture

"For most of the last century, America’s cultural landscape—its fashion, art, music, design, entertainment—changed dramatically every 20 years or so. But these days, even as technological and scientific leaps have continued to revolutionize life, popular style has been stuck on repeat, consuming the past instead of creating the new. (…)

The past is a foreign country. Only 20 years ago the World Wide Web was an obscure academic thingamajig. All personal computers were fancy stand-alone typewriters and calculators that showed only text (but no newspapers or magazines), played no video or music, offered no products to buy. E-mail (a new coinage) and cell phones were still novelties. Personal music players required cassettes or CDs. Nobody had seen a computer-animated feature film or computer-generated scenes with live actors, and DVDs didn’t exist. The human genome hadn’t been decoded, genetically modified food didn’t exist, and functional M.R.I. was a brand-new experimental research technique. Al-Qaeda and Osama bin Laden had never been mentioned in The New York Times. China’s economy was less than one-eighth of its current size. CNN was the only general-interest cable news channel. Moderate Republicans occupied the White House and ran the Senate’s G.O.P. caucus. Since 1992, as the technological miracles and wonders have propagated and the political economy has transformed, the world has become radically and profoundly new. (…)

During these same 20 years, the appearance of the world (computers, TVs, telephones, and music players aside) has changed hardly at all, less than it did during any 20-year period for at least a century. The past is a foreign country, but the recent past—the 00s, the 90s, even a lot of the 80s—looks almost identical to the present. This is the First Great Paradox of Contemporary Cultural History. (…)

Madonna to Gaga

20 years after Hemingway published his war novel For Whom the Bell Tolls a new war novel, Catch-22, made it seem preposterously antique.

Now try to spot the big, obvious, defining differences between 2012 and 1992. Movies and literature and music have never changed less over a 20-year period. Lady Gaga has replaced Madonna, Adele has replaced Mariah Carey—both distinctions without a real difference—and Jay-Z and Wilco are still Jay-Z and Wilco. Except for certain details (no Google searches, no e-mail, no cell phones), ambitious fiction from 20 years ago (Doug Coupland’s Generation X, Neal Stephenson’s Snow Crash, Martin Amis’s Time’s Arrow) is in no way dated, and the sensibility and style of Joan Didion’s books from even 20 years before that seem plausibly circa-2012. (…)

Nostalgic Gaze

Ironically, new technology has reinforced the nostalgic cultural gaze: now that we have instant universal access to every old image and recorded sound, the future has arrived and it’s all about dreaming of the past. Our culture’s primary M.O. now consists of promiscuously and sometimes compulsively reviving and rejiggering old forms. It’s the rare “new” cultural artifact that doesn’t seem a lot like a cover version of something we’ve seen or heard before. Which means the very idea of datedness has lost the power it possessed during most of our lifetimes. (…)

Loss of Appetite

Look through a current fashion or architecture magazine or listen to 10 random new pop songs; if you didn’t already know they were all things from the 2010s, I guarantee you couldn’t tell me with certainty they weren’t from the 2000s or 1990s or 1980s or even earlier. (The first time I heard a Josh Ritter song a few years ago, I actually thought it was Bob Dylan.) In our Been There Done That Mashup Age, nothing is obsolete, and nothing is really new; it’s all good. I feel as if the whole culture is stoned, listening to an LP that’s been skipping for decades, playing the same groove over and over. Nobody has the wit or gumption to stand up and lift the stylus.

Why is this happening? In some large measure, I think, it’s an unconscious collective reaction to all the profound nonstop newness we’re experiencing on the tech and geopolitical and economic fronts. People have a limited capacity to embrace flux and strangeness and dissatisfaction, and right now we’re maxed out. So as the Web and artificially intelligent smartphones and the rise of China and 9/11 and the winners-take-all American economy and the Great Recession disrupt and transform our lives and hopes and dreams, we are clinging as never before to the familiar in matters of style and culture.

If this stylistic freeze is just a respite, a backward-looking counter-reaction to upheaval, then once we finally get accustomed to all the radical newness, things should return to normal—and what we’re wearing and driving and designing and producing right now will look totally démodé come 2032. Or not. Because rather than a temporary cultural glitch, these stagnant last couple of decades may be a secular rather than cyclical trend, the beginning of American civilization’s new chronic condition, a permanent loss of appetite for innovation and the shockingly new. After all, such a sensibility shift has happened again and again over the last several thousand years, that moment when all great cultures—Egyptian, Roman, Mayan, Islamic, French, Ottoman, British—slide irrevocably into an enervated late middle age. (…)

Plus ça change, plus c’est la même chose has always meant that the constant novelty and flux of modern life is all superficial show, that the underlying essences endure unchanged. But now, suddenly, that saying has acquired an alternative and nearly opposite definition: the more certain things change for real (technology, the global political economy), the more other things (style, culture) stay the same.

But wait! It gets still stranger, because even as we’ve fallen into this period of stylistic paralysis and can’t get up, more people than ever before are devoting more of their time and energy to considering and managing matters of personal style.

And why did this happen? In 1984, a few years after “yuppie” was coined, I wrote an article in Time positing that “yuppies are, in a sense, heterosexual gays. Among middle-class people, after all, gays formed the original two-income households and were the original gentrifiers, the original body cultists and dapper health-club devotees, the trendy homemakers, the refined, childless world travelers.” Gays were the lifestyle avant-garde, and the rest of us followed. (…)

Amateur Stylists

People flock by the millions to Apple Stores (1 in 2001, 245 today) not just to buy high-quality devices but to bask and breathe and linger, pilgrims to a grand, hermetic, impeccable temple to style—an uncluttered, glassy, super-sleek style that feels “contemporary” in the sense that Apple stores are like back-on-earth sets for 2001: A Space Odyssey, the early 21st century as it was envisioned in the mid-20th. And many of those young and young-at-heart Apple cultists-cum-customers, having popped in for their regular glimpse and whiff of the high-production-value future, return to their make-believe-old-fashioned lives—brick and brownstone town houses, beer gardens, greenmarkets, local agriculture, flea markets, steampunk, lace-up boots, suspenders, beards, mustaches, artisanal everything, all the neo-19th-century signifiers of state-of-the-art Brooklyn-esque and Portlandish American hipsterism.

Moreover, tens of millions of Americans, the uncool as well as the supercool, have become amateur stylists—scrupulously attending, as never before, to the details and meanings of the design and décor of their homes, their clothes, their appliances, their meals, their hobbies, and more. The things we own are more than ever like props, the clothes we wear like costumes, the places where we live, dine, shop, and vacation like stage sets. And angry right-wingers even dress in 18th-century drag to perform their protests. Meanwhile, why are Republicans unexcited by Mitt Romney? Because he seems so artificial, because right now we all crave authenticity.

The Second Paradox

So, these two prime cultural phenomena, the quarter-century-long freezing of stylistic innovation and the pandemic obsession with style, have happened concurrently—which appears to be a contradiction, the Second Great Paradox of Contemporary Cultural History. Because you’d think that style and other cultural expressions would be most exciting and riveting when they are unmistakably innovating and evolving.

Part of the explanation, as I’ve said, is that, in this thrilling but disconcerting time of technological and other disruptions, people are comforted by a world that at least still looks the way it did in the past. But the other part of the explanation is economic: like any lucrative capitalist sector, our massively scaled-up new style industry naturally seeks stability and predictability. Rapid and radical shifts in taste make it more expensive to do business and can even threaten the existence of an enterprise. One reason automobile styling has changed so little these last two decades is because the industry has been struggling to survive, which made the perpetual big annual styling changes of the Golden Age a reducible business expense. Today, Starbucks doesn’t want to have to renovate its thousands of stores every few years. If blue jeans became unfashionable tomorrow, Old Navy would be in trouble. And so on. Capitalism may depend on perpetual creative destruction, but the last thing anybody wants is their business to be the one creatively destroyed. Now that multi-billion-dollar enterprises have become style businesses and style businesses have become multi-billion-dollar enterprises, a massive damper has been placed on the general impetus for innovation and change.

It’s the economy, stupid. The only thing that has changed fundamentally and dramatically about stylish objects (computerized gadgets aside) during the last 20 years is the same thing that’s changed fundamentally and dramatically about movies and books and music—how they’re produced and distributed, not how they look and feel and sound, not what they are. This democratization of culture and style has two very different but highly complementary results. On the one hand, in a country where an adorably huge majority have always considered themselves “middle class,” practically everyone who can afford it now shops stylishly—at Gap, Target, Ikea, Urban Outfitters, Anthropologie, Barnes & Noble, and Starbucks. Americans: all the same, all kind of cool! And yet, on the other hand, for the first time, anyone anywhere with any arcane cultural taste can now indulge it easily and fully online, clicking themselves deep into whatever curious little niche (punk bossa nova, Nigerian noir cinema, pre-war Hummel figurines) they wish. Americans: quirky, independent individualists!

We seem to have trapped ourselves in a vicious cycle—economic progress and innovation stagnated, except in information technology; which leads us to embrace the past and turn the present into a pleasantly eclectic for-profit museum; which deprives the cultures of innovation of the fuel they need to conjure genuinely new ideas and forms; which deters radical change, reinforcing the economic (and political) stagnation. I’ve been a big believer in historical pendulum swings—American sociopolitical cycles that tend to last, according to historians, about 30 years. So maybe we are coming to the end of this cultural era of the Same Old Same Old. As the baby-boomers who brought about this ice age finally shuffle off, maybe America and the rich world are on the verge of a cascade of the wildly new and insanely great. Or maybe, I worry some days, this is the way that Western civilization declines, not with a bang but with a long, nostalgic whimper.”

Kurt Andersen, American novelist and journalist, to read full essay click You Say You Want a Devolution?, Vanity Fair, Jan 2012 (Illustration by James Taylor)

See also:

Neal Gabler on The Elusive Big Idea - ‘We are living in a post ideas world where bold ideas are almost passé’
Infinite Stupidity. Social evolution may have sculpted us not to be innovators and creators as much as to be copiers

Apr
26th
Thu
permalink

Jason Silva on singularity, synthetic biology and a desire to transcend human boundaries

   

"That’s what we do with all of our art. A beautiful cathedral, a beautiful painting, a beautiful song—-all of those are ecstatic visions held in stasis; in some sense the artist is saying “here is a glimpse I had of something ephemeral and fleeting and magical, and I’m doing my best to instantiate that into stone, into paint, into stasis.” And that’s what human beings have always done, we try to capture these experiences before they go dim, we try to make sure that what we glimpse doesn’t fade away before we get hungry or sleepy later. (…)

We want to transcend our biological limitations. We don’t want biology or entropy to interrupt the ecstasy of consciousness. Consciousness, when it’s unburdened by the body, is something that’s ecstatic; we use the mind to watch the mind, and that’s the meta-nature of our consciousness, we know that we know that we know, and that’s such a delicious feeling, but when it’s unburdened by biology and entropy it becomes more than delicious; it becomes magical. I mean, think of the unburdening of the ego that takes place when we watch a film; we sit in a dark room, it’s sort of a modern church, we turn out the lights and an illumination beams out from behind us creating these ecstatic visions. We lose ourselves in the story, we experience a genuine catharsis, the virtual becomes real—-it’s total transcendence, right? (…)

This haunting idea of the passing of time, of the slipping away of the treasured moments of our lives, became a catalyst for my thinking a lot about mortality. This sense that the moment is going to end, the night will be over, and that we’re all on this moving walkway headed towards death; I wanted a diversion from that reality. In Ernest Becker's book The Denial of Death, he talks about how the neurotic human condition is not a product of our sexual repression, but rather our repression in the face of death anxiety. We have this urgent knot in our stomach because we’re keenly aware that we’re mortal, and so we try to find these diversions so that we don’t think about it—-and these have manifested into the religious impulse, the romantic impulse, and the creative impulse.

As we increasingly become sophisticated, cosmopolitan people, the religious impulse is less relevant. The romantic impulse has served us well, particularly in popular culture, because that’s the impulse that allows us to turn our lovers into deities; we say things like “she’s like salvation, she’s like the wind,” and we end up worshipping our lovers. We invest in this notion that to be loved by someone is to be saved by someone. But ultimately no relationship can bear the burden of godhood; our lovers reveal their clay feet and their frailties and they come back down to the world of biology and entropy. 

So then we look for salvation in the creative impulse, this drive to create transcendent art, or to participate in aesthetic arrest. We make beautiful architecture, or beautiful films that transport us to this lair where we’re like gods outside of time. But it’s still temporal. The arts do achieve that effect, I think, and so do technologies to the extent that they’re extensions of the human mind, extensions of our human longing. In a way, that is the first pathway to being immortal gods. Particularly with technologies like the space shuttle, which make us into gods in the sense that they let us hover over the earth looking down on it. But then we’re not gods, because we still age and we die.

But even if you see the singularity only as a metaphor, you have to admit it’s a pretty wonderful metaphor, because human nature, if nothing else, consists of this desire to transcend our boundaries—-the entire history of man from hunter gatherer to technologist to astronaut is this story of expanding and transcending our boundaries using our tools. And so whether the metaphor works for you or not, that’s a wonderful way to live your life, to wake up every day and say, “even if I am going to die I am going to transcend my human limitations.” And then if you make it literal, if you drop this pretense that it’s a metaphor, you notice that we actually have doubled our lifespan, we really have improved the quality of life across the world, we really have created magical devices that allow us to send our thoughts across space at nearly the speed of light. We really are on the cusp of reprogramming our biology like we program computers. 

All of the sudden this metaphor of the singularity spills over into the realm of the possible, and it makes it that much more intoxicating; it’s like going from two dimensions to three dimensions, or black and white to color. It just keeps going and going, and it never seems to hit the wall that other ideas hit, where you have to stop and say to yourself “stop dreaming.” Here you can just kind of keep dreaming, you can keep making these extrapolations of Moore’s Law, and say “yeah, we went from building-sized supercomputers to the iPhone, and in forty-five years it will be the size of a blood cell.” That’s happening, and there’s no reason to think it’s going to stop.

Q: Going through your videos, I noticed that one vision of the singularity that you keep returning to is this idea of “substrate-independent minds.” Can you explain what a substrate independent mind is, and why it makes for such a compelling vision of the future?

Jason Silva: That has to do with what’s called STEM compression, which is this notion that all technologies become compressed in terms of space, time, energy and matter (STEM) as they evolve. Our brain is a great example of this; it’s got this dizzying level of complexity for such a small space, but the brain isn’t optimal. The optimal scenario would be to have brain-level complexity, or even higher-level complexity in something that’s the size of cell. If we radically upgrade our bodies with biotech, we might find that in addition to augmenting our biological capabilities, we’re also going to be replacing more of our biology with non-biological components, so that things are backed up and decentralized and not subject to entropy. More and more of the data processing that makes up our consciousness is going to be non-biological, and eventually we might be able to discard biology altogether, because we’ll have finally invented a computational substrate that supports the human mind. 

At that point, if we’re doing computing at the nano scale, or the femto scale, which is even smaller, you could see extraordinary things. What if we could store all of the computing capacity of the world’s computer networks in something that operates at the femto scale? What if we could have thinking, dreaming, conscious minds operating at the femto scale? That would be a substrate independent mind.

You can even go beyond that. John Smart has this really interesting idea he calls the Transcension Hypothesis. It’s this idea that that all civilizations hit a technological singularity, after which they stop expanding outwards, and instead become subject to STEM compression that pushes them inward into denser and denser computational states until eventually we disappear out of the visible universe, and we enter into a black-hole-like condition. So you’ve got digital minds exponentially more powerful than the ones we use today, operating in the computational substrate, at the femto scale, and they’re compressing further and further into a black hole state, because a black hole is the most efficient computational substrate that physics has ever described. I’m not a physicist, but I have read physicists who say that black holes are the ultimate computers, and that’s why the whole STEM compression idea is so interesting, especially with substrate independent minds; minds that can hop back and forth between different organizational structures of matter.  (…)

With technology, we’ve been doing the same thing we used to with religion, which is to dream of a better way to exist, but technology actually gives you real ways to extend your thoughts and your vision. (…)



The mind is always participating in these feedback loops with the spaces it resides in; whatever is around us is a mirror that we’re holding up to ourselves, because everything we’re thinking about we’re creating a model of in our heads. So when you’re in constrained spaces you’re having constrained thoughts, and when you’re in vast spaces you have vast thoughts. So when you get to sit and contemplate actual outer space, solar systems, and galaxies, and super clusters—-think about how much that expands your inner world. That’s why we get off on space. 

I also get off on synthetic biology, because I love the metaphors that exist between technology and biology: the idea that we may be able to reprogram the operating system, or upgrade the software of our biology. It’s a great way to help people understand what’s possible with biology, because people already understand the power we have over the digital world—-we’re like gods in cyberspace, we can make anything come into being. When the software of biology is subject to that very same power, we’re going to be able to do those same things in the realm of living things. There’s this Freeman Dyson line that I have quoted a million times in my videos, to the point where people are actually calling me out about it, but the reason I keep coming back to it is that it’s so emblematic of my awe in thinking about this stuff—-he says that "in the future, a new generation of artists will be writing genomes as fluently as Blake and Byron wrote verses." It’s a really well placed analogy, because the alphabet is a technology; you can use it to engender alphabetic rapture with literature and poetry. Guys like Shakespeare and Blake and Byron were technologists who used the alphabet to engineer wonderful things in the world. With biology, new generations of artists will be able to perform the same miracles that Shakespeare and those guys did with words, only they’ll be doing it with genes.

Q: You romanticize technology in some really interesting ways; in one of your videos you say that if you could watch the last century in time lapse you would see ideas spilling out of the human mind and into the physical universe. Do you expect that interface between the mind and the physical to become even more lubricated as time passes? Or are there limits, physical or otherwise, that we’re eventually going to run up against?

Jason Silva: It’s hard to say, because as our tools become more powerful they shrink the buffer time between our dreams and our creations. Today we still have this huge lag time between thinking and creation. We think of something, and then we have to go get the stuff for it, and then we have to build it—-it’s not like we can render it at the speed of thought. But eventually it will get to the point where it will be like that scene in Inception where he says that we can create and perceive our world at the same time. Because, again, if you look at human progress in time lapse, it is like that scene in Inception. People thought “airplane, aviation, jet engine” and then those things were in the world. If you look at the assembly line of an airplane in time lapse it actually looks self-organizing; you don’t see all of these agencies building it, instead it’s just being formed. And when you see the earth as the biosphere, as this huge integrated system, then you see this stuff just forming over time, just popping into existence. There’s this process of intention, imagination and instantiation, and the buffer time between each of those steps is getting smaller and smaller. (…)”

Jason Silva, Venezuelan-American television personality, filmmaker, gonzo journalist and founding producer/host for Current TV, A Timothy Leary for the Viral Video Age, The Atlantic, Apr 12, 2012.

Turning Into Gods - ‘Concept Teaser’ by Jason Silva

"Turning Into Gods is a new feature length documentary exploring mankind’s journey to ‘play jazz with the universe’… it is a story of our ultimate potential, the reach of our intelligence, the scope of our scientific and engineering abilities and the transcendent quality of our heroic and noble calling.

Thinking, feeling, striving, man is whatPierre Teilhard de Chardin called “the ascending arrow of the great biological synthesis.”… today we walk a tight-rope between ape and Nietzsche’s Overman… how will we make it through, and what is the texture and color of our next refined and designed evolutionary leap? (…)

"We’re on the cusp of a bio-tech/nanotech/artificial-intelligence revolution that will open up new worlds of exploration. And we should open our minds to the limitless, mind-boggling possibilities.”

Why We Could All Use a Heavy Dose of Techno-optimism, Vanity Fair, May 7, 2010.

See also:

‘To understand is to perceive patterns’, Lapidarium notes
Wildcat and Jason Silva on immortality
☞ Jason Silva, The beginning of infinity (video)
Kevin Kelly on information, evolution and technology: ‘The essence of life is not energy but ideas’, Lapidarium notes
Kevin Kelly on Why the Impossible Happens More Often
Waking Life ☞ animated film focuses on the nature of dreams, consciousness, and existentialism. Eamonn Healy speaks about telescopic evolution and the future of humanity
Mark Changizi on Humans, Version 3.0.
Science historian George Dyson: Unravelling the digital code
Technology tag on Lapidarium notes

Mar
26th
Mon
permalink

Science historian George Dyson: Unravelling the digital code
      
                                                     George Dyson (Photo: Wired)

"It was not made for those who sell oil or sardines."

— G. W. Leibniz, ca. 1674, on his calculating machine

A universe of self-replicating code

Digital organisms, while not necessarily any more alive than a phone book, are strings of code that replicate and evolve over time. Digital codes are strings of binary digits — bits. Google is a fantastically large number, so large it is almost beyond comprehension, distributed and replicated across all kinds of hosts. When you click on a link, you are replicating the string of code that it links to. Replication of code sequences isn’t life, any more than replication of nucleotide sequences is, but we know that it sometimes leads to life.

Q [Kevin Kelly]: Are we in that digital universe right now, as we talk on the phone?

George Dyson: Sure. You’re recording this conversation using a digital recorder — into an empty matrix of addresses on a microchip that is being filled up at 44 kilobytes per second. That address space full of numbers is the digital universe.

Q: How fast is this universe expanding?

G.D.: Like our own universe at the beginning, it’s more exploding than expanding. We’re all so immersed in it that it’s hard to perceive. Last time I checked, the digital universe was expanding at the rate of five trillion bits per second in storage and two trillion transistors per second on the processing side. (…)

Q: Where is this digital universe heading?

G.D.: This universe is open to the evolution of all kinds of things. It’s cycling faster and faster. Even with Google and YouTube and Facebook, we can’t consume it all. And we aren’t aware what this space is filling up with. From a human perspective, computers are idle 99 per cent of the time. While they’re waiting for us to come up with instructions, computation is happening without us, as computers write instructions for each other. As Turing showed, this space can’t be supervised. As the digital universe expands, so does this wild, undomesticated side.”

— George Dyson interviewed by Kevin Kelly in Science historian George Dyson: Unravelling the digital code, Wired, Mar 5, 2012.

"Just as we later worried about recombinant DNA, what if these things escaped? What would they do to the world? Could this be the end of the world as we know it if these self-replicating numerical creatures got loose?

But, we now live in a world where they did get loose—a world increasingly run by self-replicating strings of code. Everything we love and use today is, in a lot of ways, self-reproducing exactly as Turing, von Neumann, and Barricelli prescribed. It’s a very symbiotic relationship: the same way life found a way to use the self-replicating qualities of these polynucleotide molecules to the great benefit of life as a whole, there’s no reason life won’t use the self-replicating abilities of digital code, and that’s what’s happening. If you look at what people like Craig Venter and the thousand less-known companies are doing, we’re doing exactly that, from the bottom up. (…)

What’s, in a way, missing in today’s world is more biology of the Internet. More people like Nils Barricelli to go out and look at what’s going on, not from a business or what’s legal point of view, but just to observe what’s going on.

Many of these things we read about in the front page of the newspaper every day, about what’s proper or improper, or ethical or unethical, really concern this issue of autonomous self-replicating codes. What happens if you subscribe to a service and then as part of that service, unbeknownst to you, a piece of self-replicating code inhabits your machine, and it goes out and does something else? Who is responsible for that? And we’re in an increasingly gray zone as to where that’s going. (…)

Why is Apple one of the world’s most valuable companies? It’s not only because their machines are so beautifully designed, which is great and wonderful, but because those machines represent a closed numerical system. And they’re making great strides in expanding that system. It’s no longer at all odd to have a Mac laptop. It’s almost the normal thing.

But I’d like to take this to a different level, if I can change the subject… Ten or 20 years ago I was preaching that we should look at digital code as biologists: the Darwin Among the Machines stuff. People thought that was crazy, and now it’s firmly the accepted metaphor for what’s going on. And Kevin Kelly quoted me in Wired, he asked me for my last word on what companies should do about this. And I said, “Well, they should hire more biologists.”

But what we’re missing now, on another level, is not just biology, but cosmology. People treat the digital universe as some sort of metaphor, just a cute word for all these products. The universe of Apple, the universe of Google, the universe of Facebook, that these collectively constitute the digital universe, and we can only see it in human terms and what does this do for us?

We’re missing a tremendous opportunity. We’re asleep at the switch because it’s not a metaphor. In 1945 we actually did create a new universe. This is a universe of numbers with a life of their own, that we only see in terms of what those numbers can do for us. Can they record this interview? Can they play our music? Can they order our books on Amazon? If you cross the mirror in the other direction, there really is a universe of self-reproducing digital code. When I last checked, it was growing by five trillion bits per second. And that’s not just a metaphor for something else. It actually is. It’s a physical reality.

We’re still here at the big bang of this thing, and we’re not studying it enough. Who’s the cosmologist really looking at this in terms of what it might become in 10,000 years? What’s it going to be in 100 years? Here we are at the very beginning and we just may simply not be asking the right questions about what’s going on. Try looking at it from the other side, not from our side as human beings. Scientists are the people who can do that kind of thing. You can look at viruses from the point of view of a virus, not from the point of view of someone getting sick.

Very few people are looking at this digital universe in an objective way. Danny Hillis is one of the few people who is. His comment, made exactly 30 years ago in 1982, was that "memory locations are just wires turned sideways in time". That’s just so profound. That should be engraved on the wall. Because we don’t realize that there is this very different universe that does not have the same physics as our universe. It’s completely different physics. Yet, from the perspective of that universe, there is physics, and we have almost no physicists looking at it, as to what it’s like. And if we want to understand the sort of organisms that would evolve in that totally different universe, you have to understand the physics of the world in which they are in.  It’s like looking for life on another planet. Danny has that perspective. Most people say just, “well, a wire is a wire. It’s not a memory location turned sideways in time.” You have to have that sort of relativistic view of things.

We are still so close to the beginning of this explosion that we are still immersed in the initial fireball. Yet, in that short period of time, for instance, it was not long ago that to transfer money electronically you had to fill out paper forms on both ends and then wait a day for your money to be transferred. And, in a very few years, it’s a dozen years or so, most of the money in the world is moving electronically all the time.

The best example of this is what we call the flash crash of May 6th, two years ago, when suddenly, the whole system started behaving unpredictably. Large amounts of money were lost in milliseconds, and then the money came back, and we quietly (although the SEC held an investigation) swept it under the rug and just said, “well, it recovered. Things are okay.” But nobody knows what happened, or most of us don’t know.

There was a great Dutch documentary—Money and Speed: Inside the Black Box—where they spoke to someone named Eric Scott Hunsader who actually had captured the data on a much finer time scale, and there was all sorts of very interesting stuff going on. But it’s happening so quickly that it’s below what our normal trading programs are able to observe, they just aren’t accounting for those very fast things. And this could be happening all around us—not just in the world of finance. We would not necessarily even perceive it, that there’s a whole world of communication that’s not human communication. It’s machines communicating with machines. And they may be communicating money, or information that has other meaning—but if it is money, we eventually notice it. It’s just the small warm pond sitting there waiting for the spark.

It’s an unbelievably interesting time to be a digital biologist or a digital physicist, or a digital chemist. A good metaphor is chemistry. We’re starting to address code by template, rather than by numerical location—the way biological molecules do.

We’re living in a completely different world. The flash crash was an example: you could have gone out for a cup of coffee and missed the whole thing, and come back and your company lost a billion dollars and got back 999 million, while you were taking your lunch break. It just happened so fast, and it spread so quickly.

So, yes, the fear scenario is there, that some malevolent digital virus could bring down the financial system. But on the other hand, the miracle of this flash crash was not that it happened, but that it recovered so quickly. Yet, in those milliseconds, somebody made off with a lot of money. We still don’t know who that was, and maybe we don’t want to know.

The reason we’re here today (surrounded by this expanding digital universe) is because in 1936, or 1935, this oddball 23-year-old undergraduate student, Alan Turing, developed this theoretical framework to understand a problem in mathematical logic, and the way he solved that problem turned out to establish the model for all this computation. And I believe we wold have arrived here, sooner or later, without Alan Turing or John von Neumann, but it was Turing who developed the one-dimensional model, and von Neumann who developed the two-dimensional implementation, for this increasingly three-dimensional digital universe in which everything we do is immersed. And so, the next breakthrough in understanding will also I think come from some oddball. It won’t be one of our great, known scientists. It’ll be some 22-year-old kid somewhere who makes more sense of this.

But, we’re going back to biology, and of course, it’s impossible not to talk about money, and all these other ways that this impacts our life as human beings. What I was trying to say is that this digital universe really is so different that the physics itself is different. If you want to understand what types of life-like or self-reproducing forms would develop in a universe like that, you actually want to look at the sort of physics and chemistry of how that universe is completely different from ours. An example is how not only its time scale but how time operates is completely different, so that things can be going on in that world in microseconds that suddenly have a real effect on ours.

Again, money is a very good example, because money really is a sort of a gentlemen’s agreement to agree on where the money is at a given time. Banks decide, well, this money is here today and it’s there tomorrow. And when it’s being moved around in microseconds, you can have a collapse, where suddenly you hit the bell and you don’t know where the money is. And then everybody’s saying, “Where’s the money? What happened to it?” And I think that’s what happened. And there are other recent cases where it looks like a huge amount of money just suddenly disappeared, because we lost the common agreement on where it is at an exact point in time. We can’t account for those time periods as accurately as the computers can.

One number that’s interesting, and easy to remember, was in the year 1953, there were 53 kilobytes of high-speed memory on planet earth. This is random access high-speed memory. Now you can buy those 53 kilobytes for an immeasurably small, thousandth of one cent or something. If you draw the graph, it’s a very nice, clean graph. That’s sort of Moore’s Law; that it’s doubling. It has a doubling time that’s surprisingly short, and no end in sight, no matter what the technology does. We’re doubling the number of bits in a extraordinarily short time.

And we have never seen that. Or I mean, we have seen numbers like that, in epidemics or chain reactions, and there’s no question it’s a very interesting phenomenon. But still, it’s very hard not to just look at it from our point of view. What does it mean to us? What does it mean to my investments? What does it mean to my ability to have all the music I want on my iPhone? That kind of thing. But there’s something else going on. We’re seeing a fraction of one percent of it, and there’s this other 99.99 percent that people just aren’t looking at.

The beginning of this was driven by two problems. The problem of nuclear weapons design, and the problem of code breaking were the two drivers of the dawn of this computational universe. There were others, but those were the main ones.

What’s the driver today? You want one word? It’s advertising. And, you may think advertising is very trivial, and of no real importance, but I think it’s the driver. If you look at what most of these codes are doing, they’re trying to get the audience, trying to deliver the audience. The money is flowing as advertising.

And it is interesting that Samuel Butler imagined all this in 1863, and then in his book Erewhon. And then 1901, before he died, he wrote a draft for “Erewhon Revisited.” In there, he called out advertising, saying that advertising would be the driving force of these machines evolving and taking over the world. Even then at the close of 19th century England, he saw advertising as the way we would grant power to the machines.

If you had to say what’s the most powerful algorithm set loose on planet earth right now? Originally, yes, it was the Monte Carlo code for doing neutron calculations. Now it’s probably the AdWords algorithm. And the two are related: if you look at the way AdWords works, it is a Monte Carlo process. It’s a sort of statistical sampling of the entire search space, and a monetizing of it, which as we know, is a brilliant piece of work. And that’s not to diminish all the other great codes out there.

We live in a world where we measure numbers of computers in billions, and numbers of what we call servers, which are the equivalent of in the old days, of what would be called mainframes. Those are in the millions, hundreds of millions.

Two of the pioneers of this—to single out only two pioneers—were John Von Neumann and Alan Turing. If they were here today Turing would be 100. Von Neumann would be 109. I think they would understand what’s going on immediately—it would take them a few minutes, if not a day, to figure out, to understand what was going on. And, they both died working on biology, and I think they would be immediately fascinated by the way biological code and digital code are now intertwined. Von Neumann’s consuming passion at the end was self-reproducing automata. And Alan Turing was interested in the question of how molecules could self-organize to produce organisms.

They would be, on the other hand, astonished that we’re still running their machines, that we don’t have different computers. We’re still just running your straight Von Neumann/Turing machine with no real modification. So they might not find our computers all that interesting, but they would be diving into the architecture of the Internet, and looking at it.

In both cases, they would be amazed by the direct connection between the code running on computers and the code running in biology—that all these biotech companies are directly reading and writing nucleotide sequences in and out of electronic memory, with almost no human intervention. That’s more or less completely mechanized now, so there’s direct translation, and once you translate to nucleotides, it’s a small step, a difficult step, but, an inevitable step to translate directly to proteins. And that’s Craig Venter’s world, and it’s a very, very different world when we get there.

The question of how and when humans are going to expand into the universe, the space travel question, is, in my view, almost rendered obsolete by this growth of a digitally-coded biology, because those digital organisms—maybe they don’t exist now, but as long as the system keeps going, they’re inevitable—can travel at the speed of light. They can propagate. They’re going to be so immeasurably far ahead that maybe humans will be dragged along with it.

But while our digital footprint is propagating at the speed of light, we’re having very big trouble even getting to the eleven kilometers per second it takes to get into lower earth orbit. The digital world is clearly winning on that front. And that’s for the distant future. But it changes the game of launching things, if you no longer have to launch physical objects, in order to transmit life.”

George Dyson, author and historian of technology whose publications broadly cover the evolution of technology in relation to the physical environment and the direction of society, A universe of self-replicating code, Edge, Mar 26, 2012.

See also:

Jameson Dungan on information and synthetic biology
Vlatko Vedral: Decoding Reality: the universe as quantum information
Rethinking “Out of Africa: A Conversation with Christopher Stringer (2011)
A Short Course In Synthetic Genomics, The Edge Master Class with George Church & Craig Venter (2009)
Eat Me Before I Eat You! A New Foe For Bad Bugs: A Conversation with Kary Mullis (2010)
Mapping The Neanderthal Genome. A Conversation with Svante Pääbo (2009)
Engineering Biology”: A Conversation with Drew Endy (2008)
☞ “Life: A Gene-Centric View A Conversation in Munich with Craig Venter & Raichard Dawkins (2008)
Ants Have Algorithms: A Talk with Ian Couzin (2008)
Life: What A Concept, The Edge Seminar, Freeman Dyson, J. Craig Venter, George Church, Dimitar Sasselov, Seth Lloyd, Robert Shapiro (2007)
Code II J. Doyne Farmer v. Charles Simonyi (1998)
Jason Silva on singularity, synthetic biology and a desire to transcend human boundaries

Mar
21st
Wed
permalink

Richard Doyle on Creativity, evolution of mind and the rhetorical membrane between humans and an informational universe

              

Q [Jason Silva]: The Jesuit Priest and scientist Pierre Teilhard de Chardin spoke of the Noosphere very early on. A profile in WIRED Magazine article said, 

"Teilhard imagined a stage of evolution characterized by a complex membrane of information enveloping the globe and fueled by human consciousness”.. Teilhard saw the Net coming more than half a century before it arrived. He believed this vast thinking membrane would ultimately coalesce into “the living unity of a single tissue” containing our collective thoughts and experiences."  Teilhard wrote, "The living world is constituted by consciousness clothed in flesh and bone.

He argued that the primary vehicle for increasing complexity consciousness among living organisms was the nervous system. The informational wiring of a being, he argued - whether of neurons or electronics - gives birth to consciousness. As the diversification of nervous connections increases, evolution is led toward greater consciousness… thoughts?

Richard Doyle: Yes, he also called it this process of the evolution of consciousness “Omega Point”. The noosphere imagined here relied on a change in our relationship to  consciousness as much to any technological change and was part of evolution’s epic quest for self awareness. Here Teilhard is in accord with Julian Huxley (Aldous’ brother, a biologist) and Carl Sagan when they observed that “we are a way for the cosmos to know itself.” Sri Aurobindo’s The Life Divine traces out this evolution of consciousness as well through the greek and Sanskrit traditions as well as Darwinism and (relatively) modern philosophy. All are describing evolution’s slow and dynamic quest towards understanding itself.

         

I honestly think we are still grappling with the fact that our minds are distributed across a network by technology, and have been in a feedback loop between our brains and technologies at least since the invention of writing. As each new “mutation” occurs in the history of evolution of information technology, the very character of our minds shifts. McLuhan's Understanding Media is instructive here as well (he parsed it as the Global Village), and of course McLuhan was the bard who advised Leary on "Tune in, Turn on, Drop Out" and very influential on Terence McKenna.

One difference between now and Plato’s time is the infoquake through which we are all living. This radical increase in quantity no doubt has qualitative effects - it changes what it feels like to think and remember. Plato was working through the effect of one new information technology – writing – whereas today we “upgrade” every six months or so…Teilhard observes the correlative of this evolutionary increase in information - and the sudden thresholds it crosses - in the evolution of complexity and nervous systemsThe noosphere is a way of helping us deal with this “phase transition” of consciousness that may well be akin to the phase transition between liquid water and water vapor - a change in degree that effects a change in kind.

Darwin’s Pharmacy suggests that ecodelics were precisely such a mutation in information technology that increased sexually selective fitness through the capacity to process greater amounts of information, and that they are “extraordinarily sensitive to initial rhetorical traditions.” What this means is that because ecodelic experiences are so sensitive to the context in which we experience them, they can help make us aware of the effect of language and music etc on our consciousness, and thereby offer an awareness of our ability to effect our own consciousness through our linguistic and creative choices. This can be helpful when trying to browse the infoquake. Many other practices do so as well - meditation is the most well established practice for noticing the effects we can have on our own consciousness, and Sufi dervishes demonstrate this same outcome for dancing. I do the same on my bicycle, riding up a hill and chanting.

One problem I have with much of the discourse of “memes" is that it is often highly reductionistic - it often forgets that ideas have an ecology too, they must be "cultured." Here I would argue that drawing on Lawrence Lessig's work on the commons, the “brain” is a necessary but insufficient “spawning” ground for ideas that becomes actual. The commons is the spawning ground of ideas; brains are pretty obviously social as well as individual. Harvard biologist Richard Lewontin notes that there is no such thing as “self replicating” molecules, since they always require a context to be replicated. This problem goes back at last to computer scientist John Von Neumann's 1947 paper on Self reproducing automata.

I think Terence McKenna described the condition as "language is loose on planet three", and its modern version probably occurs first in the work of writer William S. Burroughs, whose notion of the "word virus" predates the "meme" by at least a decade. Then again this notion of "ideas are real" goes back to cosmologies that begin with the priority of consciousness over matter, as in "In the beginning was the word, and the word was god, and the word was with god." So even Burroughs could get a late pass for his idea. (…)

Q: Richard Dawkin's definition of a meme is quite powerful: 

“I think that a new kind of replicator has recently emerged on this very planet, […] already achieving evolutionary change at a rate that leaves the old gene panting far behind.” [the replicator is] human culture; the vector of transmission is language, and the spawning ground is the brain.”  

This notion that the ”the vector of transmission is language" is very compelling.. It seems to suggest that just as in biological evolution the vector of transmission has been the DNA molecule, in the noosphere, the next stage up, it is LANGUAGE that has become a major player in the transfer of information towards achieving evolutionary change.. Kind of affects how you think about the phrase “words have power”. This insight reminds me of a quote that describes, in words, the subjective ecstasy that a mind feels when upon having a transcendent realization that feels as if it advances evolution: 

"A universe of possibilities,

Grey infused by color,

The invisible revealed,

The mundane blown away

by awe” 

Is this what you mean by ‘the ecstasy of language’?

Richard Doyle: Above, I noted that ecodelics can make us aware of the feedback loops between our creative choices – should I eat mushrooms in a box? - Should I eat them with a fox? - and our consciousness. In other words, they can make us aware of the tremendous freedom we have in creating our own experience. Leary called this “internal freedom.” Becoming aware of the practically infinite choices we have to compose our lives, including the words we use to map them, can be overwhelming – we feel in these instances the “vertigo of freedom.” What to do? In ecodelic experience we can perceive the power of our maps. That moment in which we can learn to abide the tremendous creative choice we have, and take responsibility for it, is what I mean by the “ecstasy of language.” 

I would point out, though, that for those words you quote to do their work, they have to be read. The language does not do it "on its own" but as a result of the highly focused attention of readers. This may seem trivial but it is often left out, with some serious consequences. And “reading” can mean “follow up with interpretation”. I cracked up when I googled those lines above and found them in a corporate blog about TED, for example. Who knew that neo-romantic poetry was the emerging interface of the global corporate noosphere? (…)

Q: Buckminster Fuller described humans as "pattern integrities", Ray Kurzweil says we are "patterns of information". James Gleick's new book, The Information, says that “information may be more primary than matter”..  what do you make of this? And if we indeed are complex patterns, how can we hack the limitations of biology and entropy to preserve our pattern integrity indefinitely? 

Richard Doyle: First: It is important to remember that the history of the concept and tools of “information” is full of blindspots – we seem to be constantly tempted to underestimate the complexity of any given system needed to make any bit of information meaningful or useful. Caitlin, Kolmogorov Stephan Wolfram and John Von Neumann each came independently to the conclusion that information is only meaningful when it is “run” - you can’t predict the outcome of even many trivial programs without running the program. So to say that “information may be more primary than matter” we have to remember that “information” does not mean “free from constraints.” Thermodynamics – including entropy – remains.

Molecular and informatic reductionism – the view that you can best understand the nature of a biological system by cutting it up into the most significant bits, e.g. DNA – is a powerful model that enables us to do things with biological systems that we never could before. Artist Eduardo Kac collaborated with a French scientist to make a bioluminescent bunny. That’s new! But sometimes it is so powerful that we forget its limitations. The history of the human genome project illustrates this well. AND the human genome is incredibly interesting. It’s just not the immortality hack many thought it would be.

In this sense biology is not a limitation to be “transcended” (Kurzweil), but a medium of exploration whose constraints are interesting and sublime. On this scale of ecosystems, “death” is not a “limitation” but an attribute of a highly dynamic interactive system. Death is an attribute of life. Viewing biology as a “limitation” may not be the best way to become healthy and thriving beings.

Now, that said, looking at our characteristics as “patterns of information” can be immensely powerful, and I work with it at the level of consciousness as well as life. Thinking of ourselves as “dynamic patterns of multiply layered and interconnected self transforming information” is just as accurate of a description of human beings as “meaningless noisy monkeys who think they see god”, and is likely to have much better effects. A nice emphasis on this “pattern” rather than the bits that make it up can be found in Carl Sagan’s “The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.”

Q: Richard Dawkins declared in 1986 that ”What lies at the heart of every living thing is not a fire, not warm breath, not a ‘spark of life.’ It is information, words, instructions, […] If you want to understand life,” Dawkins wrote, “don’t think about vibrant, throbbing gels and oozes, think about information technology.” How would you explain the relationship between information technology and the reality of the physical world?

Richard Doyle: Again, information is indeed physical. We can treat a sequence of information as abstraction and take it out of its context – like a quotation or a jellyfish gene spliced into a rabbit to enable it to glow. We can compress information, dwindling the resources it takes to store or process it. But “Information, words, instructions” all require physical instantiation to even be “information, words, instructions.” Researcher Rolf Landauer showed back in the 1960s that even erasure is physical. So I actually think throbbing gels and oozes and slime mold and bacteria eating away at the garbage gyre are very important when we wish to “understand” life. I actually think Dawkins gets it wrong here – he is talking about “modeling” life, not “understanding” it. Erwin Schrödinger, the originator of the idea of the genetic code and therefore the beginning of the “informatic” tradition of biology that Dawkins speaks in here, knew this very well and insisted on the importance of first person experience for understanding.

So while I find these metaphors useful, that is exactly what they are: metaphors. There is a very long history to the attempt to model words and action together: Again, John 1:1 is closer to Dawkin’s position here than he may be comfortable with: “In the Beginning was the word, and the word was god, and the word was with god” is a way of working with this capacity of language to bring phenomena into being. It is really only because we habitually think of language as “mere words” that we continually forget that they are a manifestation of a physical system and that they have very actual effects not limited to the physics of their utterance – the words “I love you” can have an effect much greater than the amount of energy necessary to utter them. Our experiences are highly tuneable by the language we use to describe them.

Q: Talk about the mycelial archetype. Author Paul Stamet compares the pattern of the mushroom mycelium with the overlapping information-sharing systems that comprise the Internet, with the networked neurons in the brain, and with a computer model of dark matter in the universe. All share this densely intertwingled filamental structure…. what is the connection? what is the pattern that connects here? 

Richard Doyle: First things first: Paul Stamets is a genius and we should listen to his world view carefully and learn from it. Along with Lynn Margulis and Dorion Sagan, whose work I borrow from extensively in Darwin’s Pharmacy (as well as many others), Stamets is asking us to contemplate and act on the massive interconnection between all forms of life. This is a shift in worldview that is comparable to the Copernican shift from a geocentric cosmos – it is a shift toward interconnection and consciousness of interconnection. And I like how you weave in Gregory Bateson's phrase “the pattern that connects” here, because Bateson (whose father, William Bateson, was one of the founders of modern genetics) continuously pointed toward the need to develop ways of perceiving the whole. The “mycelial archetype”, as you call it, is a reliable and rather exciting way to recall the whole: What we call “mushrooms” are really the fruiting bodies of an extensive network of cross connection.

That fuzz growing in an open can of tomato paste in your fridge – mycelium. So even opening our refrigerator – should we be lucky enough to have one, with food in it - can remind us that what we take to be reality is is an actuality only appearance – a sliver, albeit a significant one for our world, of the whole. That fuzz can remind us that (1) appearance and reality or not the same thing at all and (2) beyond appearance there is a massive interconnection in unity. This can help remind us who and what we really are. 

With the word ‘archetype”, you of course invoke the psychologist Carl Jung who saw archetypes as templates for understanding, ways of organizing our story of the world. There are many archetypes – the Hero, the Mother, the Trickster, the sage. They are very powerful because they help stitch together what can seem to be a chaotic world – that is both their strength and their weakness. It is a weakness because most of the time we are operating within an archetype and we don’t even know it, and we don’t know therefore that we can change our archetype

By experimenting with a different archetype – imagining, for example, the world through the lens of a 2400 year old organism that is mostly invisible to a very short lived and recent species becoming aware of its creative responsibility in altering the planet – is incredibly powerful, and in Darwin’s Pharmacy I am trying to offer a way to experiment with the idea of plant planet as well as “mycelium” archetype. One powerful aspect of the treating the mycelium as our archetype as humanity is that it is “distributed” - it does not operate via a center of control but through cross connection “distributed” over a space.

Anything we can do to remember both our individuation and our interconnection is timely – we experience the world as individuals, and our task is to discover our nature within the larger scale reality of our dense ecological interconnection. In the book I point to the Upanishad’s “Tat Tvam Asi as a way of comprehending how we can both be totally individual and an aspect of the whole.

Q: You’ve talked about the ecstasy of language and the role of rhetoric in shaping reality.. These notions echo some of Terence McKenna's ideas about language… He calls language an “ecstatic activity of signification”… and says that for the “inspired one, it is almost as if existence is uttering itself through him”… Can you expand on this? How does language create reality?? 

Richard Doyle: It’s incredibly fun and insightful to echo Terence McKenna. He’s really in this shamanic bard tradition that goes all the back to Empedocles at least, and is distributed widely across the planet. He’s got a bit of Whitman in him with his affirmation of the erotic aspects of enlightenment. He was Emerson speaking to a Lyceum crowd remixed through rave culture. Leary and McKenna were resonating with the irish bard archetype. And Terrence was echoing Henry Munn, who was echoing Maria Sabina, whose chants and poetics can make her seem like Echo herself – a mythological story teller and poet (literally “sound”) who so transfixes Hera (Zeus’s wife) that Zeus can consort with nymphs. Everywhere we look there are allegories of sexual selection’s role in the evolution of poetic & shamanic language! 

And Terrence embodies the spirit of eloquence, helping translate our new technological realities (e.g. virtual reality, a fractal view of nature, radical ecology) and the states of mind that were likely to accompany them. Merlin Donald writes of the effects of “external symbolic storage” on human culture – as a onetime student of McLuhan’s, Donald was following up on Plato’s insights I mentioned above that writing changes how we think, and therefore, who we are

Human culture is going through a fantastic “reality crisis” wherein we discover the creative role we play in nature. Our role in global climate change – not to mention our role in dwindling biodiversity – is the “shadow” side of our increasing awareness that humans have a radical creative responsibility for their individual and collective lives. And our lives are inseparable from the ecosystems with which we are enmeshed. THAT is reality. To the extent that we can gather and focus our attention on retuning our relation towards ecosystems in crisis, language can indeed shape reality. We’ll get the future we imagine, not necessarily the one we deserve.

Q: Robert Anton Wilson spoke about “reality tunnels”…. These ‘constructs’ can limit our perspectives and perception of reality, they can trap us, belittle us, enslave us, make us miserable or set us free… How can we hack our reality tunnel?  Is it possible to use rhetoric and/or psychedelics to “reprogram” our reality tunnel? 

Richard Doyle: We do nothing but program and reprogram our reality tunnelsSeriously, the Japanese reactor crisis follows on the BP oil spill as a reminder that we are deeply interconnected on the level of infrastructure – technology is now planetary in scale, so what happens here effects somebody, sometimes Everybody, there. These infrastructures – our food sheds, our energy grid, our global media - run on networks, protocols, global standards, agreements: language, software, images, databases and their mycelial networks.

The historian Michel Foucault called these “discourses”, but we need to connect these discourses to the nonhuman networks with which they are enmeshed, and globalization has been in part about connecting discourses to each other across the planet. Ebola ends up in Virginia, Starbucks in Hong Kong. This has been true for a long time, of course – Mutual Assured Destruction was planetary in scale and required a communication and control structure linking, for example, a Trident submarine under the arctic ice sheet – remember that? - to a putatively civilian political structure Eisenhower rightly warned us about: the military industrial complex. The moon missions illustrate this principle as well – we remember what was said as much as what else was done, and what was said, for a while, seem to induce a sense of truly radical and planetary possibility.

So if we think of words as a description of reality rather than part of the infrastructure of reality, we miss out on the way different linguistic patterns act as catalysts for different realities. I call these “rhetorical softwares”. In my first two books, before I really knew about Wilson’s work or had worked through Korzybski with any intensity, I called these “rhetorical softwares.”

Now the first layer of our reality tunnel is our implicit sense of self – this is the only empirical reality any of us experiences – what we subjectively experience. RAW was a brilliant analyst of the ways experience is shaped by the language we use to describe it. One of my favorite examples from his work is his observation that in English, “reality” is a noun, so we start to treat it as a “thing”, when in fact reality, this cosmos, is also quite well mapped as an action – a dynamic unfolding for 13.7 billion years. That is a pretty big mismatch between language and reality, and can give us a sense that reality is inert, dead, lifeless, “concrete”, and thus not subject to change. By experimenting with what Wilson, following scientist John Lilly, called “metaprograms”, we can change the maps that shape the reality we inhabit. (…)

Q: The film Inception explored the notion that our inner world can be a vivid, experiential dimension, and that we can hack it, and change our reality… what do you make of this? 

Richard Doyle: The whole contemplative tradition insists on this dynamic nature of consciousness. “Inner” and “outer” are models for aspects of reality – words that map the world only imperfectly. Our “inner world” - subjective experience – is all we ever experience, so if we change it obviously we will see a change in what we label “external” reality it is of course part of and not separable from. One of the maps we should experiment with, in my view, is this “inner” and “outer” one – this is why one of my aliases is “mobius.” A mobius strip helps makes clear that “inside” and “outside” are… labels. As you run your finger along a mobius strip, the “inside” becomes “outside” and the “outside” becomes “inside.”.

Q: Can we give put inceptions out into the world?

Richard Doyle: We do nothing but! And, it is crucial to add, so too does the rest of our ecosystem. Bacteria engage in quorum sensing, begin to glow, and induce other bacteria to glow – this puts their inceptions into the world. Thanks to the work of scientists like Anthony Trewavas, we know that plants engage in signaling behavior between and across species and even kingdoms: orchids “throw” images of female wasps into the world, attracting male wasps, root cells map the best path through the soil. The whole blooming confusion of life is signaling, mapping and informing itself into the world. The etymology of “inception” is “to begin, take in hand” - our models and maps are like imagined handholds on a dynamic reality.

Q: What is the relationship between psychedelics and information technology? How are ipods, computers and the internet related to LSD? 

Richard Doyle: This book is part of a trilogy on the history of information in the life sciences. So, first: psychedelics and biology. It turns out that molecular biology and psychedelics were important contexts for each other. I first started noticing this when I found that many people who had taken LSD were talking about their experiences in the language of molecular biology – accessing their DNA and so forth. When I learned that psychedelic experience was very sensitive to “set and setting” - the mindset and context of their use - I wanted to find out how this language of molecular biology was effecting people’s experiences of the compounds. In other words, how did the language affect something supposedly caused by chemistry? 

Tracking the language through thousands of pages, I found that both the discourse of psychedelics and molecular biology were part of the “informatic vision” that was restructuring the life sciences as well as the world, and found common patterns of language in the work of Timothy Leary (the Harvard psychologist) and Francis Crick (who won the Nobel prize with James Watson and Maurice Wilkins for determining the structure of DNA in 1954), so in 2002 I published an article describing the common “language of information” spoken by Leary and Crick. I had no idea that Crick had apparently been using LSD when he was figuring out the structure of DNA. Yes, that blew my mind when it came out in 2004. I feel like I read that between the lines of Crick’s papers, which gave me confidence to write the rest of the book about the feedback between psychedelics and the world we inhabit.

The paper did hone in on the role that LSD played in the invention of PCR (polymerase chain reaction) – Kary Mullis, who won the Nobel prize for the invention of this method of making copies of a sequence of DNA, talked openly of the role that LSD played in the process of invention. Chapter 4 of the book looks to use of LSD in “creative problem solving” studies of the 1960s. These studies – hard to imagine now, 39 years into the War on Drugs, but we can Change the Archetype - suggest that used with care, psychedelics can be part of effective training in remembering how to discern the difference between words and things, maps and territories.

In short, this research suggested that psychedelics were useful for seeing the limitations of words as well as their power, perhaps occasioned by the experience of the linguistic feedback loops between language and psychedelic experiences that themselves could never be satisfactorily described in language. I argue that Mullis had a different conception of information than mainstream molecular biology – a pragmatic concept steeped in what you can do with words rather than in what they mean. Mullis seems to have thought of information as “algorithms” - recipes of code, while the mainsteam view was thinking of it as implicitly semantically, as “words with meaning.”

Ipods, Internet, etc: Well, in some cases there are direct connections. Perhaps Bill Joy said it best when he said that there was a reason that LSD and Unix were both from BerkeleyWhat the Doormouse Said by John Markoff came out after I wrote my first paper on Mullis and I was working on the book, and it was really confirmation of a lot of what I seeing indicated by my conceptual model of what is going on, which is as follows: Sexual selection is a good way to model the evolution of information technology. It yields bioluminescence – the most common communication strategy on the planet – chirping insects, singing birds, Peacocks fanning their feathers, singing whales, speaking humans, and humans with internet access. These are all techniques of information production, transformation or evaluation. I am persuaded by Geoffrey Miller’s update of Charles Darwin’s argument that language and mind are sexually selected traits, selected not simply for survival or even the representation of fitness, but for their sexiness. Leary: “Intelligence is the greatest aphrodisiac.”

I offer the hypothesis that psychedelics enter the human toolkit as “eloquence adjuncts” - tools and techniques for increasing the efficacy of language to seemingly create reality – different patterns of language ( and other attributes of set and setting) literally causes different experiences. The informatic revolution is about applying this ability to create reality with different “codes” to the machine interface. Perhaps this is one of the reason people like Mitch Kapor (a pioneer of computer spreadsheets), Stewart Brand (founder of a pre-internet computer commons known as the Well) and Bob Wallace (one of the original Microsoft seven and an early proponent of shareware), Mark Pesce were or are all psychonauts.

Q: Cyborg Anthropologist Amber Case has written about Techno-social wormholes.. the instant compression of time and space created every time we make a telephone call…  What do you make of this compression of time and space made possible by the engineering “magic” of technology? 

Richard Doyle:  It’s funny the role that the telephone call plays as an example in the history of our attempts to model the effects of information technologies. William Gibson famously defined cyberspace as the place where a telephone call takes place. (Gibson’s coinage of the term “cyberspace” is a good example of an “inception”) Avital Ronell wrote about Nietzsche’s telephone call to the beyond and interprets the history of philosophy according to a “telephonic logic”. When I was a child my father once threw our telephone into the atlantic ocean – that was what he made of the magic of that technology, at least in one moment of anger. This was back in the day when Bell owned your phone and there was some explaining to do. This magic of compression has other effects – my dad got phone calls all day at work, so when was at home he wanted to turn it off. The only way he knew to turn it off was to rip it out of the wall – there was no modular plug, just a wire into the wall - and throw it into the ocean.

So there is more than compression going on here: Deleuze and Guattari, along with the computer scientist Pierre Levy after them, call it “deterritorialization”. The differences between “here” and “there” are being constantly renegotiated as our technologies of interaction develop. Globalization is the collective effect of these deterritorializations and reterritorializations at any given moment.

And the wormhole example is instructive: the forces that enable such collapse of space and time as the possibility of time travel would likely tear us to smithereens. The tensions and torsions of this deterritorialization at part of what is at play in the Wikileaks revolutions, this compression of time and space offers promise for distributed governance as well as turbulence. Time travel through wormholes, by the way, is another example of an inception – Carl Sagan was looking for a reasonable way to transport his fictional aliens in Contact, called Cal Tech physicist Skip Thorne for help, and Thorne came up with the idea.

Q: The film Vanilla Sky explored the notion of a scientifically-induced lucid dream where we can live forever and our world is built out of our memories and ”sculpted moment to moment and lived with the romantic abandon of a summer day or the feeling of a great movie or a pop song you always loved”. Can we sculpt ‘real’ reality as if it were a “lucid dream”

Richard Doyle:Some traditions model reality as a lucid dream. The Diamond Sutra tells us that to be enlightened we must view reality as “a phantom, a dew drop, a bubble.”  This does not mean, of course, that reality does not exist, only that appearance has no more persistence than a dream and that what we call “reality” is our map of reality. When we wake up, the dream that had been so compelling is seen to be what it was: a dream, nothing more or less. Dreams do not lack reality – they are real patterns of information. They just aren’t what we usually think they are. Ditto for “ordinary” reality. Lucid dreaming has been practiced by multiple traditions for a long time – we can no doubt learn new ways of doing so. In the meantime, by recognizing and acting according to the practice of looking beyond appearances, we can find perhaps a smidgeon more creative freedom to manifest our intentions in reality.

Q: Paola Antonelli, design curator of MoMa, has written about Existenz Maximum, the ability of portable music devices like the ipod to create”customized realities”, imposing a soundtrack on the movie of our own life. This sounds empowering and godlike- can you expand on this notion? How is technology helping us design every aspect of both our external reality as well as our internal, psychological reality?

Richard Doyle: Well, the Upanishads and the Book of Luke both suggest that we “get our inner Creator on”, the former by suggesting that “Tat Tvam Asi” - there is an aspect of you that is connected to Everything, and the latter by recommending that we look not here or there for the Kingdom of God, but “within.” So if this sounds “god like”, it is part of a long and persistent tradition. I personally find the phrase “customized realities” redundant given the role of our always unique programs and metaprograms. So what we need to focus on his: to which aspect of ourselves do we wish to give this creative power? These customized realities could be enpowering and god like for corporations that own the material, or they could enpower our planetary aspect that unites all of us, and everything in between. It is, as always, the challenge of the magus and the artist to decide how we want to customize reality once we know that we can.

Q: The Imaginary Foundation says that "to understand is to perceive patterns"… Some advocates of psychedelic therapy have said that certain chemicals heighten our perception of patterns..They help! us “see more”.  What exactly are they helping us understand? 

Richard Doyle: Understanding! One of the interesting bits of knowledge that I found in my research was some evidence that psychonauts scored better on the Witkin Embedded Figure test, a putative measure of a human subject’s ability to “distinguish a simple geometrical figure embedded in a complex colored figure.” When we perceive the part within the whole, we can suddenly get context, understanding.

Q: An article pointing to the use of psychedelics as catalysts for breakthrough innovation in silicon valley says that users …

"employ these cognitive catalysts, de-condition their thinking periodically and come up with the really big connectivity ideas arrived at wholly outside the linear steps of argument. These are the gestalt-perceiving, asterism-forming “aha’s!” that connect the dots and light up the sky with a new archetypal pattern."

This seems to echo what other intellectuals have been saying for ages.  You referred to Cannabis as “an assassin of referentiality, inducing a butterfly effect in thought. Cannabis induces a parataxis wherein sentences resonate together and summon coherence in the bardos between one statement and another.”

Baudelaire also wrote about cannabis as inducing an artificial paradise of thought:  

“…It sometimes happens that people completely unsuited for word-play will improvise an endless string of puns and wholly improbable idea relationships fit to outdo the ablest masters of this preposterous craft. […and eventually]… Every philosophical problem is resolved. Every contradiction is reconciled. Man has surpassed the gods.”

Anthropologist Henry Munn wrote that:

"Intoxicated by the mushrooms, the fluency, the ease, the aptness of expression one becomes capable of are such that one is astounded by the words that issue forth… At times… the words leap to mind, one after another, of themselves without having to be searched for: a phenomenon similar to the automatic dictation of the surrealists except that here the flow of consciousness, rather than being disconnected, tends to be coherent: a rational enunciation of meanings.  The spontaneity they liberate is not only perceptual, but linguistic, the spontaneity of speech, of fervent, lucid discourse, astonishing. […] For the inspired one, it is as if existence were uttering itself through him […]

Can you expand a bit on how certain ecodelics (as well as marijuana) can help us de-condition our thinking, have creative breakthroughs as well as intellectual catharsis? How is it that “intoxication” could, under certain conditions, actually improve our cognition and creativity and contribute to the collective intelligence of the species?

Richard Doyle: I would point, again, to Pahnke's description of ego death. This is by definition an experience when our maps of the world are humbled. In the breakdown of our ordinary worldview - such as when a (now formerly)  secular being such as myself finds himself  feeling unmistakably sacred - we get a glimpse of reality without our usual filters. It is just not possible to use the old maps, so we get even an involuntary glimpse of reality. This is very close to the Buddhist practice of exhausting linguistic reference through chanting or Koans - suddenly we see the world through something besides our verbal mind.

Ramana Maharshi says that in the silence of the ego we perceive reality - reality IS the breakdown of the ego. Aldous Huxley, who was an extraordinarily adroit and eloquent writer with knowledge of increasingly rare breadth and depth, pointed to a quote by William Blake when trying to sum up his experience: the doors of perception were cleansed. This is a humble act, if you think about it: Huxley, faced with the beauty and grandeur of his mescaline experience, offers the equivalent of ‘What he said!”. Huxley also said that psychedelics offered a respite from “the throttling embrace of the self”, suggesting that we see the world without the usual filters of our egoic self. (…)

And if you look carefully at the studies by pioneers such as Myron Stolaroff and Willis Harman that you reference, as I do in the book, you will see that great care was taken to compose the best contexts for their studies. Subjects, for example, were told not to think about personal problems but to focus on their work at hand, and, astonishingly enough, it seems to have worked. These are very sensitive technologies and we really need much more research to explore their best use. This means more than studying their chemical function - it means studying the complex experiences human beings have with them. Step one has to be accepting that ecodelics are and always have been an integral part of human culture for some subset of the population. (…)

Q: Kevin Kelly refers to technological evolution as following the momentum begun at the big bang - he has stated:

"…there is a continuum, a connection back all the way to the Big Bang with these self-organizing systems that make the galaxies, stars, and life, and now is producing technology in the same way. The energies flowing through these things are, interestingly, becoming more and more dense. If you take the amount of energy that flows through one gram per second in a galaxy, it is increased when it goes through a star, and it is actually increased in life…We don’t realize this. We think of the sun as being a hugely immense amount of energy. Yet the amount of energy running through a sunflower per gram per second of the livelihood, is actually greater than in the sun. Actually, it’s so dense that when it’s multiplied out, the sunflower actually has a higher amount of energy flowing through it. "..

Animals have even higher energy usage than the plant, and a jet engine has even higher than an animal. The most energy-dense thing that we know about in the entire universe is the computer chip in your computer. It is sending more energy per gram per second through that than anything we know. In fact, if it was to send it through any faster, it would melt or explode. It is so energy-dense that it is actually at the edge of explosion.”…  

Can you comment on the implications of what he’s saying here?

Richard Doyle: I think maps of “continuity” are crucial and urgently needed. We can model the world as either “discrete” - made up of parts - or “continuous” - composing a whole - to powerful effect. Both are in this sense true. This is not “relativism” but a corollary of that creative freedom to choose our models that seems to be an attribute of consciousness. The mechanistic worldview extracts, separates and reconnects raw materials, labor and energy in ways that produce astonishing order as well as disorder (entropy).

By mapping the world as discrete – such as the difference between one second and another – and uniform – to a clock, there is no difference between one second and another – we have transformed the planet. Consciousness informed by discrete maps of reality has been an actual geological force in a tiny sliver of time. In so doing, we have have transformed the biosphere. So you can see just how actual this relation between consciousness, its maps, and earthly reality is. This is why Vernadsky, a geophysicist, thought we needed a new term for the way consciousness functions as a geological force: noosphere.

These discrete maps of reality are so powerful that we forget that they are maps. Now if the world can be cut up into parts, it is only because it forms a unity. A Sufi author commented that the unity of the world was both the most obvious and obscure fact. It is obvious because our own lives and the world we inhabit can be seen to continue without any experienced interruption – neither the world nor our lives truly stops and starts. This unity can be obscure because in a literal sense we can’t perceive it with our senses – this unity can only be “perceived” by our minds. We are so effective as separate beings that we forget the whole for the part.

The world is more than a collection of parts, and we can quote Carl Sagan: “The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together.” Equally beautiful is what Sagan follows up with: “The cosmos is also within us. We are made of star stuff.” Perhaps this is why models such as Kelly’s feel so powerful: reminding ourselves that there is a continuity between the Big Bang and ourselves means we are an aspect of something unfathomably grand, beautiful, complex and unbroken. This is perhaps the “grandeur” Darwin was discussing. And when we experience that grandeur it can help us think and act in aways appropriate to a geological force.

I am not sure about the claims for energy that Kelly is making – I would have to see the context and the source of his data – but I do know that when it comes to thermodynamics, what he is saying rings true. We are dissipative structures far from equilibrium, meaning that we fulfill the laws of thermodynamics. Even though biological systems such as ourselves are incredibly orderly – and we export that order through our maps onto and into the world – we also yield more entropy than our absence. Living systems, according to an emerging paradigm of Stanley Salthe, Rob Swenson, the aforementioned Margulis and Sagan, Eric Schneider, James J. kay and others, maximize entropy, and the universe is seeking to dissipate ever greater amounts of entropy.

Order is a way to dissipate yet more energy. We’re thermodynamic beings, so we are always on the prowl for new ways to dissipate energy as heat and create uncertainty (entropy), and consciousness helps us find ever new ways to do so. (In case you are wondering, Consciousness is the organized effort to model reality that yields ever increasing spirals of uncertainty in Deep Time. But you knew that.) It is perhaps in this sense that, again following Carl Sagan, “ We are a way for the cosmos to know itself.” That is pretty great map of continuity.

What I don’t understand in Kelly’s work, and I need to look at with more attention, is the discontinuity he posits between biology and technology. In my view our maps have made us think of technology as different in kind from biology, but the global mycelial web of fungi suggests otherwise, and our current view of technology seems to intensify this sense of separation even as we get interconnected through technology. I prefer Noosphere to what Kelly calls the Technium because it reminds us of the ways we are biologically interconnected with our technosocial realities. Noosphere sprouts from biosphere.

Q: There is this notion of increasing complexity… Yet in a universe where entropy destroys almost everything, here we are, the cutting edge of evolution, taking the reigns and accelerating this emergent complexity.. Kurzweil says that this makes us “very important”: 

“…It turns out that we are central, after all.  Our ability to create models—virtual realities—in our brains, combined with ou modest-looking thumbs, has been sufficient to usher in another form of evolution: technology. That development enabled the persistence of the accelerating pace that started with biological evolution. It will continue until the entire universe is at our fingertips.”   

What do you think?

Richard Doyle: Well, I think from my remarks already you can see that I agree with Kurzweil here and can only suggest that it is for this very reason that we must be very creative, careful and cunning with our models. Do we model the technologies that we are developing according to the effects they will have on the planetary whole? Only rarely, though this is what we are trying to do at the Penn State Center for Nanofutures, as are lots of people involved in Science, Technology and Society as well as engineering education. When we develop technologies - and that is the way psychedelics arrived in modern culture, as technologies -  we must model their effects not only on the individuals who use them, but on the whole of our ecosystem and planetary society.

If our technological models are based on the premise that this is a dead planet – and most of them very much are, one is called all kinds of names if you suggest otherwise - animist, vitalist, Gaian intelligence agent, names I wear with glee – then we will end up with a asymptotically dead planet. Consciousness will, of course, like the Terminator, “Be Back” should we perish, but let us hope that it learns to experiment better with its maps and learns to notice reality just a little bit more. I am actually an optimist on this front and think that a widespread “aha” moment is occurring where there is a collective recognition of the feedback loops that make up our technological & biological evolution.

Again, I don’t know why Kurzweil seems to think that technological evolution is discontinuous with biological evolution – technology is nested within the network of “wetwares” that make it work, and our wetwares are increasingly interconnected with our technological infrastructure, as the meltdowns in Japan demonstrate along with the dependence of many of us – we who are more bacterial than human by dry weight - upon a network of pharmaceuticals and electricity for continued life. The E. coli outbreak in Europe is another case in point – our biological reality is linked with the technological reality of supply chain management. Technological evolution is biological evolution enabled by the maps of reality forged by consciousness. (…)

Whereas technology for many promised the “disenchantment” of the world –the rationalization of this world of the contemplative spirit as everything became a Machine – here was mystical contemplative experience manifesting itself directly within what sociologist Max Weber called the “iron cage of modernity”, Gaia bubbling up through technological “Babylon.”

Now many contemplatives have sought to share their experiences through writing – pages and pages of it. As we interconnect through information technology, we perhaps have the opportunity to repeat this enchanted contemplative experience of radical interconnection on another scale, and through other means. Just say Yes to the Noosphere!”

Richard Doyle, Professor of English Affiliate Faculty, Information Science and Technology at Pennsylvania State University, in conversation with Jason Silva, Creativity, evolution of mind and the “vertigo of freedom”, Big Think, June 21, 2011. (Illustrations: 1) Randy Mora, Artífices del sonido, 2) Noosphere)

See also:

☞ RoseRose, Google and the Myceliation of Consciousness
Kevin Kelly on Why the Impossible Happens More Often
Luciano Floridi on the future development of the information society
Luciano Floridi on The Digital Revolution as a Fourth Revolution: “P2P does’t mean Pirate to Pirate but Platonist to Platonist”
The Rise of the Conversation Society: information, communication and collaboration
Keen On… James Gleick: Why Cyberspace, As a Mode of Being, Will Never Go Away (TCTV), (video) TechCrunch, Jun 23, 2011
Timothy Leary on cybernetics and a new global culture
Mark Changizi on Humans, Version 3.0.
Cyberspace tag on Lapidarium

Mar
20th
Tue
permalink

Nicholas Carr on the evolution of communication technology and our compulsive consumption of information

        

"The term “information age” gets across our sense that we’re engulfed in information in a way that is very different from anything that’s come before. (…)

I think it’s pretty clear that humans have a natural inclination, even compulsion, to seek out information. We want not only to be entertained but to know everything that is going on around us. And so as these different mass media have proliferated, we’ve gone along with the technology and consumed – to put an ugly term on it – more information. (…)

"In “The Shallows” I argue that the Internet fundamentally encourages very rapid gathering of small bits of information – the skimming and scanning of information to quickly get the basic gist of it. What it discourages are therefore the ways of thinking that require greater attentiveness and concentration, everything from contemplation to reflection to deep reading.

The Internet is a hypertext system, which means that it puts lots of links in a text. These links are valuable to us because they allow us to go very quickly between one bit of information and another. But there are studies that compare what happens when a person reads a printed page of text versus when you put links into that text. Even though we may not be conscious of it, a link represents a little distraction, a little division of attention. You can see in the evidence that reading comprehension goes down with hypertext versus plaintext. (…)

The reason why I start with Tom Standage’s book is because we tend to think of the information age as something entirely new. In fact, people have been wrestling with information for many centuries. If I was going to say when the information age started, I would probably say the 15th century with the invention of the mechanical clock, which turned time into a measurable flow, and the printing press, which expanded our ability to tap into other kinds of thinking. The information age has been building ever since then.

Standage covers one very important milestone in that story, which is the building of the telegraph system in the 19th century. The telegraph was the first really efficient system for long-distance, almost instantaneous communication. It’s a short book, a very lively read, and it shows how this ability to throw one’s thoughts across the world changed all aspects of society. It certainly changed the business world. Suddenly you could coordinate a business not just in a local area, but across the country or across oceans. It had a lot of social implications too, as people didn’t have to wait for letters to come over the course of days. And as Standage points out, it inspired a lot of the same hopes and concerns that we have today with the Internet. (…)

If “The Information” is a sprawling, sweeping story of how information has changed over time, one thing it doesn’t get into is the commercial nature of information as a good that is bought and sold. That’s the story Tim Wu tells in ”The Master Switch.” His basic argument is that whenever a new communication medium arises, a similar pattern occurs. The technology starts off as a hobbyist’s passion, democratic and open. Then over time, as it becomes more popular, it starts to be dominated by corporate interests and becomes much more formalised, before eventually being displaced by a new technology.

You see this with radio, for instance. In the beginning, radio was very much a hobbyist’s technology. When people bought a radio back then it wasn’t just a receiver, it was a transmitter. People would both receive and transmit information through their radio – it was an early version of the blogosphere in some ways. Then dominant radio corporations come in, and suddenly radio isn’t a democratic tool for transmitting and receiving information, it’s purely for receiving. Tim Wu tells a series of stories like this, and television. All of that history is really a backdrop for a discussion of the Internet, which Wu suggests will likely follow the same cycle.

So far, I think we’ve seen that. When the World Wide Web appeared 20 years ago, there was all kinds of utopian, democratic rhetoric about how it was breaking the hold of big corporations over media and communications. You saw a huge explosion of personal websites. But over time you saw corporate interests begin to dominate the web – Google, Facebook and so on. If you look at how much time a user devotes to Facebook, it shows a consolidation and centralisation of web activity onto these large corporate sites. (…)

Matthew Crawford argues that we’re losing our sense of importance of actual physical interaction with the natural world. He says that the richest kind of thinking that’s open to human beings is not thinking that takes place in the mind but thinking that involves both the mind and the body interacting with the world. Whereas when we’re sitting at our computer or looking at our smartphone, we’re in a world of symbols. It seems to me that one of the dangers of the Internet, and the way that the screen mediates all work and other kinds of processing, is that not only are we distancing ourselves from interaction with the world, but we’re beginning to lose sight of the fact that that’s even important. (…)

As more and more of the physical world is operated by software and computers, we shut off interacting with the world. Crawford, in addition to being a political philosopher, is also a motorcycle mechanic. And a lot of the book is simply stories of being a mechanic. One of the points he makes is that people used to know how their cars worked. They could open the hood, see all of the parts of their engine, change their own oil. Now when you open your hood you can’t touch anything and you don’t know how the thing works. We’ve allowed ourselves to be removed from the physical world. We’re told just to look at our GPS screen and forget how the engine works.

Q: A key point about the information age we should mention is that societies have moved from an industrial economy to a service economy, with more people in white-collar jobs and increasing income disparity as a result.

That’s absolutely true. More and more of our basic jobs, due to broad shifts in the economy, involve manipulating symbols, whether it’s words, numbers or images. That too serves to distance ourselves from manual manipulation of the world. We have offloaded all of those jobs to specialists in order to spend more time working with symbols.

Q: Tell us why you’re closing with Gary Shteyngart’s novel “Super Sad True Love Story.”

I think that novelists, and other artists, are only beginning to grapple with the implications of the Internet, smartphones and all of that. Literature provides a different and very valuable way of perceiving those implications, so I decided to end with a novel. This book is both funny and extremely horrifying. It’s set in a future that is very close in some ways to the present. Shteyngart takes phenomena and trends that are around us but we don’t even notice, pushes them a little more extreme, and suddenly it gives you a new way to think about not only where we’re heading but where we already are. (…)

As is true with most dystopian science fiction, I don’t think it’s an attempt to portray what’s going to happen. It’s more an insight into how much we and our societies have changed in a very short time, without really being aware of it. If somebody from even 10 years ago suddenly dropped into the world and saw us all walking down the street staring at these little screens, hitting them with our thumbs, it would seem very strange.

It is becoming more and more normal to monitor your smartphone even while having a conversation with a friend, spouse or child. A couple will go out to a restaurant and the first thing they will each do is stick their iPhone or Android on the table in front of them, basically announcing that they’re not going to give their full attention to the other person. So technology seems to be changing even our relationships and social expectations. (…)

Q: In a hundred years’ time, what do you think the legacy of the early Internet will be?

I think the legacy will both be of enormous benefits – particularly those that can be measured in terms of efficiency and productivity, but also the ability for people to communicate with others – and also of more troubling consequences. We are witnessing an erosion not only of privacy but of the sense that privacy of the individual is important. And we are seeing the commercialisation of processes of communication, affiliation and friendship that used to be considered intimate.

You’re probably right to talk about a hundred years to sort this all out. There’s a whole lot of threads to the story that being in the midst of it are hard to see properly, and it’s difficult to figure out what the balance of good, bad and indifferent is.

Q: What’s next in the immediate five or 10 years for the information age?

More of the same. Overall I think the general trend, as exemplified by social networks and the evolution of Google, is towards ever smaller bits of information delivered ever more quickly to people who are increasingly compulsive consumers of media and communication products. So I would say more screens, smaller screens, more streams of information coming at us from more directions, and more of us adapting to that way of living and thinking, for better or worse.

Q: So we’re not at the apex of the information age? That peak is yet to come?

All indications are that we’re going to see more rather than less.”

Nicholas Carr, American writer, interwieved by Alec Ash, Our compulsive consumption of information, The Browser - Salon.com, Mar 19, 2012.

See also:

Does Google Make Us Stupid?
Nicholas Carr on what the internet is doing to our brains?
Nicholas Carr on Books That Are Never Done Being Written

Oct
24th
Mon
permalink

Kevin Kelly on information, evolution and technology: ‘The essence of life is not energy but ideas’

                   

"Technology’s dominance ultimately stems not from its birth in human minds but from its origin in the same self-organization that brought galaxies, planets, life, and minds into existence. It is part of a great asymmetrical arc that begins at the big bang and extends into ever more abstract and immaterial forms over time. The arc is the slow yet irreversible liberation from the ancient imperative of matter and energy.”

Kevin Kelly, What Technology Wants, New York: Viking, The Penguin Group, 2010

"The best way to understand the manufactured world is not to see it as a work of human imagination only, but to see it as an extension of the biological world. Most of us walk around with a strict mental dichotomy between the natural world of genes and the artificial world of concrete and code. When we actually look at how evolution works, the distinction begins to break down. The defining force behind life is not energy but information. Evolution is a process of information transmission, and so is technology, which is why it too reflects a biological transcendence.

Q: You have described technology as the “seventh kingdom of life” – which is a very ontological description – and as “the accumulation of ideas” – which is an epistemological description. Are the two converging?

Kelly: I take a very computational view of life and evolution. If you look at the origins of life and the forces of evolution, they arevery intangible. Life is built on bits, on ideas, on information, on immaterial things. The technology sphere we have made – which is what I call the Technium – consists of information as well. We can take a number of atoms and arrange them in such a way as to maximize their usefulness – for example by creating a cell phone. When we think about who we are, we are always talking about information, about knowledge, about processes that increase the complexity of things. (…)

I am a critic of those who say that the internet has become a sentient and living being. But while the internet is not conscious like an organism, it exhibits some lifelike qualities. Life is not a binary thing that is either there or not there. It is a continuum between semi-living things like viruses and very living things like us. What we are seeing right now is an increased “lifeness” in technology as we move across the continuum. As things become more complex, they become more lifelike. (…)

One of the problems for biologists right now is to distinguish between random and organized processes. If we want to think coherently about the relationship between biology and technology, we need good working definitions to outline the edges of the spectrum of life that we are investigating. One of the ways to do that is to create artificial life and then debate whether we have crossed a threshold. I think we are beginning to see actual evolution in technology because the similarities to natural evolution are so large that it has become hard to ignore them. (…)

I think that the essence of life is natural and subject to the investigation by reason. Quantum physics is science, but it is so far removed from our normal experience that the investigation becomes increasingly difficult. Not everyone might understand it, but collectively we can. One of the reasons we want to build artificial intelligence is to supplement our human intelligence, because we may require other kinds of thinking to understand these mysteries Technology is a way to manufacture types of thinking that don’t yet exist. (…)

Innovation always has unintended consequences. Every new invention creates new solutions, but it also creates almost as many new problems. I tend to think that technology is not really powerful unless it can be powerfully abused. The internet is a great example of that: It will be abused, there will be very significant negative consequences. Even the expansion of choices itself has unintended consequences. Barry Schwartz calls it the “paradox of choice”: Humans have evolved with a limited capacity for making decisions. We can be paralyzed by choice! (…)

Most of the problems today have been generated by technology, and most future problems will be generated by technology as well. I am so technocentric that I say: The solution to technological problems is more technology. Here’s a tangible example: If I throw around some really bad ideas in this interview, you won’t counsel me to stop thinking. You will encourage me to think more and come up with better ideas. Technology is a way of thinking. The proper response to bad technology is not less, but more and better technology. (…)

I always think of technology as a child: You have to work with it, you have to find the right role and keep it away from bad influences. If you tell your child, “I will disown you if you become a lawyer”, that will almost guarantee that they become a lawyer. Every technology can be weaponized. But the way to stop that is not prohibition but an embrace of that technology to steer its future development. (…)

I am not a utopian who believes that technology will solve our problems. I am a protopian, I believe in gradual progress. And I am convinced that much of that progress is happening outside of our control. In nature, new species fill niches that can be occupied and inhabited. And sometimes, these niches are created by previous developments. We are not really in control of those processes. The same is true for innovation: There is an innate bias in the Technium that makes certain processes inevitable. (…)

I use the term the same way you would describe adolescence as the inevitable step between childhood and adulthood. We are destined by the physics and chemistry of matter. If we looked at a hundred planets in the universe that were inhabited by intelligent life, I bet that we would eventually see something like the internet on almost all of them. But can we find exceptions? Probably. (…)

Q: Is innovation a process that can continue indefinitely? Or does the infinite possibility space eventually run against the constraints of a world with finite resources and finite energy?

Kelly: I don’t believe in omega points. One of the remarkable things about life is that evolution does not stop. It always finds new paths forwards and new niches to occupy. As I said before, the essence of life is not energy but ideas. If there are limits to how many ideas can exist within a brain or within a system, we are still very far away from those limits. (…)

Long before we reach a saturation point, we will evolve into something else. We invented our humanity, and we can reinvent ourselves with genetic engineering or other innovations. We might even fork into a species that embraces speedy development and a species that wants no genetic engineering.

Q: You are advocating a very proactive approach to issues like genetic enhancements and human-technological forms of symbiosis, yet you also stress the great potential for abuse, for ethical problems and for unintended consequences.

Kelly: Yes, we are steamrolling ahead. The net gain will slightly outweigh the negative aspects. That is all we need: A slightly greater range of choices and opportunities every year equals progress. (…)

For the past ten thousand years, technological progress has on average enabled our opportunities to expand. The easiest way to demonstrate the positive arc of progress is to look at the number of people today who would want to live in an earlier time. Any of us could sell all material possessions within days and live like a caveman. I have written on the Amish people, and I have lived with native tribes, so I understand the attractions of that lifestyle. It’s a very supportive and grounded reality. But the cost of that experience is the surrender of all the other choices and opportunities we now enjoy. (…)

My point about technology is that every person has a different set of talents and abilities. The purpose of technology is to provide us with tools to maximize our talents and explore our opportunities. The challenge is to make use of the tools that fit us. Your technology can be different from my technology because our talents and interests are different. If you look at the collective, you might think that we are all becoming more alike. But when you go down to the individual level, technology has the potential to really bring out the differences that make us special. Innovation enables individualization. (…)

Q: Is the internet increasing our imaginative or innovative potential?

Kelly: That is a good point. A lot of these impossibilities happen within collective or globalist structures. We can do things that were completely impossible during the industrial age because we can now transcend our individual experience. (…)

Q: The industrial age made large-scale production possible, now we see large-scale collaboration. What is the next step?

Kelly: I love that question. What is the next stage? I think we are decades or centuries away from a global intelligence, but that would be another phase of human development. If you could generate thoughts on a planetary scale, if we moved towards singularity, that would be huge.

Q: The European: The speed of change leaves room for optimism.

Kelly: My optimism is off the chart. I got it from Asia, where I saw how quickly civilizations could move from abject poverty to incredible wealth. If they can do it, almost anything is possible. Let me go back to the original quote about seeing God in a cell phone: The reason we should be optimistic is life itself. It keeps bouncing back even when we do horrible things to it. Life is brimming with possibilities, details, intelligence, marvels, ingenuity. And the Technium is very much an extension of that possibility space.”

Kevin Kelly, writer, photographer, conservationist, the founding executive editor of Wired magazine, and a former editor/publisher of the Whole Earth Catalog, "My Optimism Is Off The Chart", The European Magazine, 20.09.2011 (Illustration: Seashells from Okinawa by Thomas Schmall)

See also:

Kevin Kelly on Technology, or the Evolution of Evolution
Kevin Kelly on Why the Impossible Happens More Often
Kevin Kelly on the Satisfaction Paradox
Technology tag on Lapidarium
Technology tag on Lapidarium notes

Sep
29th
Thu
permalink

Vannevar Bush on the new relationship between thinking man and the sum of our knowledge (1945)

                             

Tim O’Reilly on the Birth of the global mind

“Computer scientist Danny Hillis once remarked, “Global consciousness is that thing responsible for deciding that pots containing decaffeinated coffee should be orange.” (…)

The web is a perfect example of what engineer and early computer scientist Vannevar Bush called “intelligence augmentation” by computers, in his 1945 article As We May Think” in The Atlantic. He described a future in which human ability to follow an associative knowledge trail would be enabled by a device he called “the memex”. This would improve on human memory in the precision of its recall. Google is today’s ultimate memex. (…)

This is man-computer symbiosis at its best, where the computer program learns from the activity of human teachers, and its sensors notice and remember things the humans themselves would not. This is the future: massive amounts of data created by people, stored in cloud applications that use smart algorithms to extract meaning from it, feeding back results to those people on mobile devices, gradually giving way to applications that emulate what they have learned from the feedback loops between those people and their devices.”

Tim O’Reilly, the founder of O’Reilly Media, a supporter of the free software and open source movements, Birth of the global mind, Financial Times, Sept 23, 2011

"In this significant article he [Vannevar Bush] holds up an incentive for scientists when the fighting has ceased. He urges that men of science should then turn to the massive task of making more accessible our bewildering store of knowledge. For years inventions have extended man’s physical powers rather than the powers of his mind. Trip hammers that multiply the fists, microscopes that sharpen the eye, and engines of destruction and detection are new results, but not the end results, of modern science. Now, says Dr. Bush, instruments are at hand which, if properly developed, will give man access to and command over the inherited knowledge of the ages. The perfection of these pacific instruments should be the first objective of our scientists as they emerge from their war work. Like Emerson’s famous address of 1837 on “The American Scholar,” this paper by Dr. Bush calls for a new relationship between thinking man and the sum of our knowledge.” - The Atlantic’ editor

"Assume a linear ratio of 100 for future use. Consider film of the same thickness as paper, although thinner film will certainly be usable. Even under these conditions there would be a total factor of 10,000 between the bulk of the ordinary record on books, and its microfilm replica. The Encyclopoedia Britannica could be reduced to the volume of a matchbox. A library of a million volumes could be compressed into one end of a desk. If the human race has produced since the invention of movable type a total record, in the form of magazines, newspapers, books, tracts, advertising blurbs, correspondence, having a volume corresponding to a billion books, the whole affair, assembled and compressed, could be lugged off in a moving van. Mere compression, of course, is not enough; one needs not only to make and store a record but also be able to consult it, and this aspect of the matter comes later. Even the modern great library is not generally consulted; it is nibbled at by a few. (…)

We may some day click off arguments on a machine with the same assurance that we now enter sales on a cash register. But the machine of logic will not look like a cash register, even of the streamlined model.

So much for the manipulation of ideas and their insertion into the record. Thus far we seem to be worse off than before—for we can enormously extend the record; yet even in its present bulk we can hardly consult it. This is a much larger matter than merely the extraction of data for the purposes of scientific research; it involves the entire process by which man profits by his inheritance of acquired knowledge. The prime action of use is selection, and here we are halting indeed. There may be millions of fine thoughts, and the account of the experience on which they are based, all encased within stone walls of acceptable architectural form; but if the scholar can get at only one a week by diligent search, his syntheses are not likely to keep up with the current scene. (…)

Consider a future device for individual use, which is a sort of mechanized private file and library. It needs a name, and, to coin one at random, “memex" will do. A memex is a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory.

It consists of a desk, and while it can presumably be operated from a distance, it is primarily the piece of furniture at which he works. On the top are slanting translucent screens, on which material can be projected for convenient reading. There is a keyboard, and sets of buttons and levers. Otherwise it looks like an ordinary desk.

In one end is the stored material. The matter of bulk is well taken care of by improved microfilm. Only a small part of the interior of the memex is devoted to storage, the rest to mechanism. Yet if the user inserted 5000 pages of material a day it would take him hundreds of years to fill the repository, so he can be profligate and enter material freely.

Most of the memex contents are purchased on microfilm ready for insertion. Books of all sorts, pictures, current periodicals, newspapers, are thus obtained and dropped into place. Business correspondence takes the same path. And there is provision for direct entry. On the top of the memex is a transparent platen. On this are placed longhand notes, photographs, memoranda, all sorts of things. When one is in place, the depression of a lever causes it to be photographed onto the next blank space in a section of the memex film, dry photography being employed.

There is, of course, provision for consultation of the record by the usual scheme of indexing. If the user wishes to consult a certain book, he taps its code on the keyboard, and the title page of the book promptly appears before him, projected onto one of his viewing positions. Frequently-used codes are mnemonic, so that he seldom consults his code book; but when he does, a single tap of a key projects it for his use. Moreover, he has supplemental levers. On deflecting one of these levers to the right he runs through the book before him, each page in turn being projected at a speed which just allows a recognizing glance at each. If he deflects it further to the right, he steps through the book 10 pages at a time; still further at 100 pages at a time. Deflection to the left gives him the same control backwards.

A special button transfers him immediately to the first page of the index. Any given book of his library can thus be called up and consulted with far greater facility than if it were taken from a shelf. As he has several projection positions, he can leave one item in position while he calls up another. He can add marginal notes and comments, taking advantage of one possible type of dry photography, and it could even be arranged so that he can do this by a stylus scheme, such as is now employed in the telautograph seen in railroad waiting rooms, just as though he had the physical page before him.

All this is conventional, except for the projection forward of present-day mechanisms and gadgetry. It affords an immediate step, however, to associative indexing, the basic idea of which is a provision whereby any item may be caused at will to select immediately and automatically another. This is the essential feature of the  memex. The process of tying two items together is the important thing. (…)

The owner of the memex, let us say, is interested in the origin and properties of the bow and arrow. Specifically he is studying why the short Turkish bow was apparently superior to the English long bow in the skirmishes of the Crusades. He has dozens of possibly pertinent books and articles in his memex. First he runs through an encyclopedia, finds an interesting but sketchy article, leaves it projected. Next, in a history, he finds another pertinent item, and ties the two together. Thus he goes, building a trail of many items. Occasionally he inserts a comment of his own, either linking it into the main trail or joining it by a side trail to a particular item. When it becomes evident that the elastic properties of available materials had a great deal to do with the bow, he branches off on a side trail which takes him through textbooks on elasticity and tables of physical constants. He inserts a page of longhand analysis of his own. Thus he builds a trail of his interest through the maze of materials available to him.

And his trails do not fade. Several years later, his talk with a friend turns to the queer ways in which a people resist innovations, even of vital interest. He has an example, in the fact that the outraged Europeans still failed to adopt the Turkish bow. In fact he has a trail on it. A touch brings up the code book. Tapping a few keys projects the head of the trail. A lever runs through it at will, stopping at interesting items, going off on side excursions. It is an interesting trail, pertinent to the discussion. So he sets a reproducer in action, photographs the whole trail out, and passes it to his friend for insertion in his own memex, there to be linked into the more general trail.

Wholly new forms of encyclopedias will appear, ready made with a mesh of associative trails running through them, ready to be dropped into the memex and there amplified. The lawyer has at his touch the associated opinions and decisions of his whole experience, and of the experience of friends and authorities. The patent attorney has on call the millions of issued patents, with familiar trails to every point of his client’s interest. The physician, puzzled by a patient’s reactions, strikes the trail established in studying an earlier similar case, and runs rapidly through analogous case histories, with side references to the classics for the pertinent anatomy and histology. The chemist, struggling with the synthesis of an organic compound, has all the chemical literature before him in his laboratory, with trails following the analogies of compounds, and side trails to their physical and chemical behavior.

The historian, with a vast chronological account of a people, parallels it with a skip trail which stops only on the salient items, and can follow at any time contemporary trails which lead him all over civilization at a particular epoch. There is a new profession of trail blazers, those who find delight in the task of establishing useful trails through the enormous mass of the common record. The inheritance from the master becomes, not only his additions to the world’s record, but for his disciples the entire scaffolding by which they were erected.

Thus science may implement the ways in which man produces, stores, and consults the record of the race. It might be striking to outline the instrumentalities of the future more spectacularly, rather than to stick closely to methods and elements now known and undergoing rapid development, as has been done here. Technical difficulties of all sorts have been ignored, certainly, but also ignored are means as yet unknown which may come any day to accelerate technical progress as violently as did the advent of the thermionic tube. In order that the picture may not be too commonplace, by reason of sticking to present-day patterns, it may be well to mention one such possibility, not to prophesy but merely to suggest, for prophecy based on extension of the known has substance, while prophecy founded on the unknown is only a doubly involved guess. (…)

In the outside world, all forms of intelligence whether of sound or sight, have been reduced to the form of varying currents in an electric circuit in order that they may be transmitted. Inside the human frame exactly the same sort of process occurs. Must we always transform to mechanical movements in order to proceed from one electrical phenomenon to another? It is a suggestive thought, but it hardly warrants prediction without losing touch with reality and immediateness.

Presumably man’s spirit should be elevated if he can better review his shady past and analyze more completely and objectively his present problems. He has built a civilization so complex that he needs to mechanize his records more fully if he is to push his experiment to its logical conclusion and not merely become bogged down part way there by overtaxing his limited memory. His excursions may be more enjoyable if he can reacquire the privilege of forgetting the manifold things he does not need to have immediately at hand, with some assurance that he can find them again if they prove important.

The applications of science have built man a well-supplied house, and are teaching him to live healthily therein. They have enabled him to throw masses of people against one another with cruel weapons. They may yet allow him truly to encompass the great record and to grow in the wisdom of race experience. He may perish in conflict before he learns to wield that record for his true good. Yet, in the application of science to the needs and desires of man, it would seem to be a singularly unfortunate stage at which to terminate the process, or to lose hope as to the outcome.”

Vannevar Bush, (1890-1974) American engineer and science administrator known for his work on analog computing, his political role in the development of the atomic bomb as a primary organizer of the Manhattan Project, the founding of Raytheon, and the idea of the memex, an adjustable microfilm viewer which is somewhat analogous to the structure of the World Wide Web, As We May Think, The Atlantic, July 1945 (Illustration: James Ferguson, FT)

See also:

Video archive of Oct 12-13 1995 MIT/Brown Symposium on the 50th Anniversary of As We May Think
"As We May Think" - A Celebration of Vannevar Bush’s 1945 Vision, at Brown University
Computing Pages by Francesc Hervada-Sala - “As We May Think” by Vannevar Bush
Timeline of hypertext technology (Wiki)
The Difference Between Online Knowledge and Truly Open Knowledge. In the era of the Internet facts are not bricks but networks

Sep
2nd
Fri
permalink

Kevin Kelly on Why the Impossible Happens More Often

     
                                                   Noosphere by Tatiana Plakhova

"Everyone "knew" that people don’t work for free, and if they did, they could not make something useful without a boss. But today entire sections of our economy run on software instruments created by volunteers working without pay or bosses. Everyone knew humans were innately private beings, yet the impossibility of total open round-the-clock sharing still occurred. Everyone knew that humans are basically lazy, and they would rather watch than create, and they would never get off their sofas to create their own TV. It would be impossible that millions of amateurs would produce billions of hours of video, or that anyone would watch any of it. Like Wikipedia, or Linux, YouTube is theoretically impossible. But here this impossibility is real in practice. (…)

As far as I can tell the impossible things that happen now are in every case manifestations of a new, bigger level of organization. They are the result of large-scale collaboration, or immense collections of information, or global structures, or gigantic real-time social interactions. Just as a tissue is a new, bigger level of organization for a bunch of individual cells, these new social structures are a new bigger level for individual humans. And in both cases the new level breeds emergence. New behaviors emerge from the new level that were impossible at the lower level. Tissue can do things that cells can’t. The collectivist organizations of wikipedia, Linux, the web can do things that industrialized humans could not. (…)

The cooperation and coordination breed by irrigation and agriculture produced yet more impossible behaviors of anticipation and preparation, and sensitivity to the future. Human society unleashed all kinds of previously impossible human behaviors into the biosphere.

The technium is accelerating the creation of new impossibilities by continuing to invent new social organizations. (…)

When we are woven together into a global real-time society, the impossibilities will really start to erupt. It is not necessary that we invent some kind of autonomous global consciousness. It is only necessary that we connect everyone to everyone else. Hundreds of miracles that seem impossible today will be possible with this shared human awareness. (…)

In large groups the laws of statistics take over and our brains have not evolved to do statistics. The amount of data tracked is inhuman; the magnitudes of giga, peta, and exa don’t really mean anything to us; it’s the vocabulary of machines. Collectively we behave differently than individuals. Much more importantly, as individuals we behave differently in collectives. (…)

We are swept up in a tectonic shift toward large, fast, social organizations connecting us in novel ways. There may be a million different ways to connect a billion people, and each way will reveal something new about us. Something hidden previously. Others have named this emergence the Noosphere, or MetaMan, or Hive Mind. We don’t have a good name for it yet. (…)

I’ve used the example of the bee before. One could exhaustively study a honey bee for centuries and never see in the lone individual any of the behavior of a bee hive. It is just not there, and can not emerge until there are a mass of bees. A single bee lives 6 weeks, so a memory of several years is impossible, but that’s how long a hive of individual bees can remember. Humanity is migrating towards its hive mind. Most of what “everybody knows” about us is based on the human individual. Collectively, connected humans will be capable of things we cannot imagine right now. These future phenomenon will rightly seem impossible. What’s coming is so unimaginable that the impossibility of wikipedia will recede into outright obviousness.

Connected, in real time, in multiple dimensions, at an increasingly global scale, in matters large and small, with our permission, we will operate at a new level, and we won’t cease surprising ourselves with impossible achievements.”

Kevin Kelly, writer, the founding executive editor of Wired magazine, and a former editor/publisher of the Whole Earth Catalog, Why the Impossible Happens More Often, The Technium, 26 August 2011

Jul
18th
Mon
permalink

From Technologist to Philosopher. Why you should quit your technology job and get a Ph.D. in the humanities

                      

"It’s fun being a technologist. In our Internet-enabled era, it is easy for technologists to parlay creative power into societal power: We build systems that ease the transactions of everyday life, and earn social validation that we are "making the world a better place." Within a few years I had achieved more worldly success than previous generations could have imagined. I had a high-paying technology job, I was doing cutting-edge AI work, and I was living the technotopian good life.

But there was a problem. Over time, it became increasingly hard to ignore the fact that the artificial intelligence systems I was building were not actually that intelligent. They could perform well on specific tasks; but they were unable to function when anything changed in their environment. I realized that, while I had set out in AI to build a better thinker, all I had really done was to create a bunch of clever toys—toys that were certainly not up to the task of being our intellectual surrogates. (…)

I wanted to better understand what it was about how we were defining intelligence that was leading us astray: What were we failing to understand about the nature of thought in our attempts to build thinking machines? (…)

I realized that the questions I was asking were philosophical questions—about the nature of thought, the structure of language, the grounds of meaning. So if I really hoped to make major progress in AI, the best place to do this wouldn’t be another AI lab. If I really wanted to build a better thinker, I should go study philosophy. (…)

Thus, about a decade ago, I quit my technology job to get a Ph.D. in philosophy. (…) I was not aware that there existed distinct branches of analytic and continental philosophy, which took radically different approaches to exploring thought and language; or that there was a discipline of rhetoric, or hermeneutics, or literary theory, where thinkers explore different aspects of how we create meaning and make sense of our world.

As I learned about those things, I realized just how limited my technologist view of thought and language was. I learned how the quantifiable, individualistic, ahistorical—that is, computational—view I had of cognition failed to account for whole expanses of cognitive experience (including, say, most of Shakespeare). I learned how pragmatist and contextualist perspectives better reflect the diversity and flexibility of our linguistic practices than do formal language models. I learned how to recognize social influences on inquiry itself—to see the inherited methodologies of science, the implicit power relations expressed in writing—and how those shape our knowledge.

Most striking, I learned that there were historical precedents for exactly the sort of logical oversimplifications that characterized my AI work. Indeed, there were even precedents for my motivation in embarking on such work in the first place. I found those precedents in episodes ranging from ancient times—Plato’s fascination with math-like forms as a source of timeless truth—to the 20th century—the Logical Positivists and their quest to create unambiguous language to express sure foundations for all knowledge. They, too, had an uncritical notion of progress; and they, too, struggled in their attempts to formally quantify human concepts that I now see as inextricably bound up with human concerns and practices.

In learning the limits of my technologist worldview, I didn’t just get a few handy ideas about how to build better AI systems. My studies opened up a new outlook on the world. I would unapologetically characterize it as a personal intellectual transformation: a renewed appreciation for the elements of life that are not scientifically understood or technologically engineered.

In other words: I became a humanist.

And having a more humanistic sensibility has made me a much better technologist than I was before. I no longer see the world through the eyes of a machine—through the filter of what we are capable of reducing to its logical foundations. I am more aware of how the products we build shape the culture we are in. I am more attuned to the ethical implications of our decisions. And I no longer assume that machines can solve all of our problems for us. The task of thinking is still ours. (…)

The technology issues facing us today—issues of identity, communication, privacy, regulation—require a humanistic perspective if we are to deal with them adequately. (…)

I see a humanities degree as nothing less than a rite of passage to intellectual adulthood. A way of evolving from a sophomoric wonderer and critic into a rounded, open, and engaged intellectual citizen. When you are no longer engaged only in optimizing your products—and you let go of the technotopian view—your world becomes larger, richer, more mysterious, more inviting. More human. (…)

Getting a humanities Ph.D. is the most deterministic path you can find to becoming exceptional in the industry. (…) There is an industrywide shift toward more “product thinking” in leadership—leaders who understand the social and cultural contexts in which our technologies are deployed.

Products must appeal to human beings, and a rigorously cultivated humanistic sensibility is a valued asset for this challenge. That is perhaps why a technology leader of the highest status—Steve Jobs—recently credited an appreciation for the liberal arts as key to his company’s tremendous success with their various i-gadgets.

It is a convenient truth: You go into the humanities to pursue your intellectual passion; and it just so happens, as a by-product, that you emerge as a desired commodity for industry. Such is the halo of human flourishing.”

Damon Horowitz, BA in Computer Science from Columbia, a MS from MIT Media Lab, and a PhD in philosophy from Stanford, recently joined Google as In-House Philosopher / Director of Engineering, From Technologist to Philosopher, The Chronicle of Higher Education, July 17, 2011 (Illustration source: Brian Taylor for The Chronicle)

Why Machines Need People

— Damon Horowitz, Why Machines Need People, TEDxSoMa, 22 jan 2010

Jul
3rd
Sun
permalink

Nicholas Ostler on The Last Lingua Franca. English Until the Return of Babel

                        

"By and large, lingua-francas are the languages of wider communication, such as enable vast empires to have a common administration, and also allow international contacts. (…)

In the second half of the 1st millennium BC, Greek persisted around the Mediterranean mostly as the result of Greek trading, reinforced by cultural prestige of its arts and literature, but was then massively reinforced by Alexander’s conquests. Persian spread within the eastern zones conquered by the Muslims, but it flowed back westward as Persian administration became common within the empire of the Caliphs. Then it was spread wider by Turkic-speaking armies, notably into modern Turkey and India, since they could not conceive of a cultured administration without it. The use of English as a widespread lingua franca began in India (actually, as it happened, replacing Persian), but was aided elsewhere by the schools which tended to accompany religious missions in new British colonies. Later (in the 20th century) it had become unchallenged as the common language of science, of international relations and business.

Q: Latin lasted a particularly long time. Why did it survive the collapse of the Roman Empire?

It kept changing its role. First it expanded to become the language of Christianity, replacing Greek: so Latin, the mother-tongue of Western Christian majority, began to be used to express their common faith. Then it survived because it was the language of the Roman Catholic Church, i.e. the Catholic lingua franca. (Gothic-speaking Arian Christians lost out to Catholics everywhere during the sixth century AD.) De facto, Latin became the lingua franca of Western Europe, because it was the only language taught in schools. This status continued for another 1,000 years, because it was so convenient to the elite. Only when European society began to be transformed in the 16th century, with the decline of the Church, and rising power of France and England (and their middle classes), as well as the opening of the world as a whole to European commercial interests, did Latin’s advantages seem outweighed by the costs of maintaining its status.

Q: What makes you suspect that English will not reign as long as Latin?

All the factors that have spread English have already peaked, and there is no stability of power and influence which might simply leave the status quo in place. There is no accepted common political dispensation in the world nowadays, comparable to the Catholic Church in Europe. Individual powers for which English is an alien burden (China, Russia, Brazil, the Arab world, Indonesia, Mexico, even India) are already stirring, and attempting to enhance their global roles.

Q: How much longer do you think English has as a global language?

It will continue to be used until there is a workable alternative, and not a moment longer. It appears that language technology will soon provide that alternative, allowing speakers to go on using every mother-tongue, and yet be understood by speakers of any other language. This will be available in a decade or two, and (since all the costs will fall as soon as the technical problem is clearly solved) will very soon spread to be universal. So it is very unlikely that global learning (and use) of English will still be popular by the middle of this century.

Q: Will Chinese or another language take its place?

Probably not. All languages that might compete (except French, whose global days have probably passed) are regionally focused, hence limited as to global utility; and I do not anticipate a new round of global colonization, say from China, India or Indonesia. Technology will probably make a single replacement unnecessary anyway. (…)

Q: If English declines in use as a lingua franca, how must Anglophones adjust? Will travelers have to take more Berlitz classes before going abroad?

It is unlikely much adjustment will be needed. Everyone will increasingly use their own languages, and the world - given the necessary information technology - will understand. But it may increasingly be incumbent on English-speakers to find ways of penetrating statements that are made in foreign languages without an English translation (much as the world’s diplomatic establishments used to do routinely). Foreigners will increasingly adopt a “take it or leave it” attitude to English-speakers, leaving them to sink or (make the effort to) swim. But all this is much as English-speakers have long done to the rest of the world. (…)

Q: Do you think America’s elitist attitude toward other languages is changing? Is there evidence that more Americans are studying foreign languages?

No. No. Quite the reverse, despite the panic about US ignorance of Middle Eastern languages supposedly caused by 9/11, and the wars to which it has led. (…)

Q: When English loses its dominance outside its mother tongue regions, are Americans likely to become even more open or more hostile toward learning other languages and toward immigrants speaking other languages in the U.S? (Is there any historical example to point one-way or the other?)

As I said, I think there will be more hostility against immigrants who do not adopt English. Such symbolic disloyalty (as it will be seen) will be more offensive to many, as it becomes apparent that the USA is losing its acknowledged dominance. Americans may, if anything, be more likely to “stand on ceremony” and insist militantly that others - even in foreign parts of the world - accommodate them by adopting the means to cope with English, while (perhaps, at least in the early days) resisting the need to make equal and opposite accommodations themselves.

The best recent model might be the reluctance, not to say ‘denial’, of the French in reacting to the decline in international use of their language post 1918. But it was also notable that the nations of northern and eastern Europe (the last to acquire Latin as a lingua-franca) tried to hang on to use of Latin longest in 18th and even 19th centuries, when French (and other major European vernaculars) had become established as media of international communication. It is not a direct parallel, but one recalls Valerius Maximus in the first century AD, congratulating the Roman magistrates who “persistently maintained the practice of replying only in Latin to the Greeks. And so they forced them to speak through interpreters, losing their linguistic fluency, their great strength, not just in our capital city but in Greece and Asia too, evidently to promote the honour of the Latin language throughout the world.”

Nicholas Ostler, British scholar and author. Ostler studied at Balliol College, Oxford, where he received degrees in Greek, Latin, philosophy, and economics. He later studied under Noam Chomsky at the Massachusetts Institute of Technology, where he earned his Ph.D. in linguistics and Sanskrit, The Last Lingua Franca. English Until the Return of Babel, Penguin Books, 2011 (Illustration source)

See also:

List of lingua francas
☞ Henry Hitchings, What’s the language of the future?, Salon, Nov 6, 2011.
Why Do Languages Die? Urbanization, the state and the rise of nationalism, Lapidarium notes

Jul
2nd
Sat
permalink

When history was made - an alternative timeline for the past two millennia

"Some people recite history from above, recording the grand deeds of great men. Others tell history from below, arguing that one person’s life is just as much a part of mankind’s story as another’s. If people do make history, as this democratic view suggests, then two people make twice as much history as one. Since there are almost 7 billion people alive today, it follows that they are making seven times as much history as the 1 billion alive in 1811. The chart below shows a population-weighted history of the past two millennia. By this reckoning, over 28% of all the history made since the birth of Christ was made in the 20th century. Measured in years lived, the present century, which is only ten years old, is already “longer” than the whole of the 17th century. This century has made an even bigger contribution to economic history. Over 23% of all the goods and services made since 1AD were produced from 2001 to 2010, according to an updated version of Angus Maddison's figures.”

Two thousand years in one chart, The Economist, Jun 28th 2011