Lapidarium notes RSS

Amira Skomorowska's notes

"Everything you can imagine is real."— Pablo Picasso



Age of information
Artificial intelligence
Cognition, perception, relativity
Cognitive science
Collective intelligence
Human being
Mind & Brain
Science & Art
Self improvement
The other


A Box Of Stories
Reading Space




Beauty of Mathematics

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, without the gorgeous trappings of painting or music."

Betrand Russell, British philosopher, logician, mathematician, historian, and social critic (1872-1970)

By Yann Pineill & Nicolas Lefaucheux,


Van Gogh’s Shadow by Luca Agnani (Paintings In Motion)

"Luca Agnani, an Italian designer and animator, has taken the classic works of Vincent Van Gogh, and brought them to life. He’s created a short film called Van Gogh’s Shadow which shows over a dozen of Van Gogh’s paintings suddenly filled with life and movement, perhaps giving us an insight into how the artist may have seen the world he lived in.” source

"To calculate the exact shadows, I tried to understand the position of the sun relative to Arles at different times of the day and, according to my calculations, even the river [in The Langlois Bridge at Arles] should flow in that direction," Agnani told The Creators Project over email. "If the video was projected over his paintings, my interpretations would superimpose perfectly, like a mapping of a framework. (…)

Agnani has become somewhat of a phenomenon over the past few years. Since 2011, the Italian artist’s visual mapping and design projections have transformed the faces of some of Europe’s most celebrated religious structures, including the Sanctuary of San Michele (a piece commissioned by UNESCO) and the Catania Cathedral in Sicily. When French musician Yann Tiersen played Ancona, Italy, he asked Agnani to design a projection for his opening night concert at the Mole Vanvitelliana: an artificial port-island that houses a 19th century Leprosorium-turned-art gallery.” The Creators Project, Aug 8, 2013


1. Fishing Boats on the Beach
2. Langlois Bridge at Arles, The
3. Farmhouse in Provence
4. White House at Night, The
5. Still Life
6. Evening The Watch (after Millet)
7. View of Saintes-Maries
8. Bedroom
9. Factories at Asnieres Seen
10. White House at Night, The
11. Restaurant
12. First Steps (after Millet)
13. Self-Portrait

Music: Experience - Ludovico Einaudi

Luca Agnani, Van Gogh Shadow, 2013


Waking Life animated film focuses on the nature of dreams, consciousness, and existentialism

Waking Life is an American animated film (rotoscoped based on live action), directed by Richard Linklater and released in 2001. The entire film was shot using digital video and then a team of artists using computers drew stylized lines and colors over each frame.

The film focuses on the nature of dreams, consciousness, and existentialism. The title is a reference to philosopher George Santayana's maxim: “Sanity is a madness put to good uses; waking life is a dream controlled.”

Waking Life is about an unnamed young man in a persistent dream-like state that eventually progresses to lucidity. He initially observes and later participates in philosophical discussions of issues such as reality, free will, the relationship of the subject with others, and the meaning of life. Along the way the film touches on other topics including existentialism, situationist politics, posthumanity, the film theory of André Bazin, and lucid dreaming itself. By the end, the protagonist feels trapped by his perpetual dream, broken up only by unending false awakenings. His final conversation with a dream character reveals that reality may be only a single instant which the individual consciousness interprets falsely as time (and, thus, life) until a level of understanding is achieved that may allow the individual to break free from the illusion.

Ethan Hawke and Julie Delpy reprise their characters from Before Sunrise in one scene. (Wiki)

Eamonn Healy speaks about telescopic evolution and the future of humanity

We won’t experience 100 years of progress in the 21st century—it will be more like 20,000 years of progress (at today’s rate). (…) The paradigm shift rate (i.e., the overall rate of technical progress) is currently doubling (approximately) every decade; that is, paradigm shift times are halving every decade (and the rate of acceleration is itself growing exponentially).

So, the technological progress in the twenty-first century will be equivalent to what would require (in the linear view) on the order of 200 centuries. In contrast, the twentieth century saw only about 25 years of progress (again at today’s rate of progress) since we have been speeding up to current rates. So the twenty-first century will see almost a thousand times greater technological change than its predecessor.

Ray Kurzweil, American author, scientist, inventor and futurist, The Law of Accelerating Returns, KurzweilAI, March 7, 2001.

"If we’re looking at the highlights of human development, you have to look at the evolution of the organism and then at the development of its interaction with the environment. Evolution of the organism will begin with the evolution of life perceived through the hominid coming to the evolution of mankind. Neanderthal and Cro-Magnon man. Now, interestingly, what you’re looking at here are three strings: biological, anthropological — development of the cities — and cultural, which is human expression.

Now, what you’ve seen here is the evolution of populations, not so much the evolution of individuals. And in addition, if you look at the time scales that are involved here — two billion years for life, six million years for the hominid, 100,000 years for mankind as we know it — you’re beginning to see the telescoping nature of the evolutionary paradigm. And then when you get to agricultural, when you get to scientific revolution and industrial revolution, you’re looking at 10,000 years, 400 years, 150 years. Uou’re seeing a further telescoping of this evolutionary time. What that means is that as we go through the new evolution, it’s gonna telescope to the point we should be able to see it manifest itself within our lifetime, within this generation.

The new evolution stems from information, and it stems from two types of information: digital and analog. The digital is artificial intelligence. The analog results from molecular biology, the cloning of the organism. And you knit the two together with neurobiology. Before on the old evolutionary paradigm, one would die and the other would grow and dominate. But under the new paradigm, they would exist as a mutually supportive, noncompetitive grouping. Okay, independent from the external.

And what is interesting here is that evolution now becomes an individually centered process, emanating from the needs and desires of the individual, and not an external process, a passive process where the individual is just at the whim of the collective. So, you produce a neo-human, okay, with a new individuality and a new consciousness. But that’s only the beginning of the evolutionary cycle because as the next cycle proceeds, the input is now this new intelligence. As intelligence piles on intelligence, as ability piles on ability, the speed changes. Until what? Until we reach a crescendo in a way could be imagined as an enormous instantaneous fulfillment of human? human and neo-human potential. It could be something totally different. It could be the amplification of the individual, the multiplication of individual existences. Parallel existences now with the individual no longer restricted by time and space.

And the manifestations of this neo-human-type evolution, manifestations could be dramatically counter-intuitive. That’s the interesting part. The old evolution is cold. It’s sterile. It’s efficient, okay? And its manifestations of those social adaptations. We’re talking about parasitism, dominance, morality, okay? Uh, war, predation, these would be subject to de-emphasis. These will be subject to de-evolution. The new evolutionary paradigm will give us the human traits of truth, of loyalty, of justice, of freedom. These will be the manifestations of the new evolution. And that is what we would hope to see from this. That would be nice.”

Eamonn Healy, professor of chemistry at St. Edward’s University in Austin, Texas, where his research focuses on the design of structure-activity probes to elucidate enzymatic activity. He appears in Richard Linklater's 2001 film Waking Life discussing concepts similar to a technological singularity and explaining “telescopic evolution.”, Eamonn Healy speaks about telescopic evolution and the future of humanity from Brandon Sergent, Transcript

See also:

Jason Silva on singularity, synthetic biology and a desire to transcend human boundaries


A Record Of Life

A beautiful short animation made by Owen Gatley and Luke Jinks loosely based on the scientific recording of lifes great species and how this has given us clues that piece together, for us to discover the secrets of the evolution and diversity of life on Earth.


David Deutsch: A new way to explain explanation

For tens of thousands of years our ancestors understood the world through myths, and the pace of change was glacial. The rise of scientific understanding transformed the world within a few centuries. Why?

"Before the scientific revolution, they believed that everything important, knowable, was already known, enshrined in ancient writings, institutions, and in some genuinely useful rules of thumb — which were, however, entrenched as dogmas, along with many falsehoods. So they believed that knowledge came from authorities that actually knew very little. And therefore progress depended on learning how to reject the authority of learned men, priests, traditions and rulers. Which is why the scientific revolution had to have a wider context: the Enlightenment, a revolution in how people sought knowledge, trying not to rely on authority. "Take no one’s word for it." (…)

What creationist and empiricists both ignore is that, in that sense, no one has ever seen a bible either, that the eye only detects light, which we don’t perceive. Brains only detect nerve impulses. And they don’t perceive even those as what they really are, namely electrical crackles. So we perceive nothing as what it really is.

Our connection to reality is never just perception. It’s always, as Karl Popper put it, theory-laden. Scientific knowledge isn’t derived from anything. It’s like all knowledge. It’s conjectural, guesswork, tested by observation, not derived from it. So, were testable conjectures the great innovation that opened the intellectual prison gates? No. Contrary to what’s usually said, testability is common, in myths and all sorts of other irrational modes of thinking. Any crank claiming the sun will go out next Tuesday has got a testable prediction. (…)

This easy variability is the sign of a bad explanation. Because, without a functional reason to prefer one of countless variants, advocating one of them, in preference to the others, is irrational. So, for the essence of what makes the difference to enable progress, seek good explanations, the ones that can’t be easily varied, while still explaining the phenomena.

Now, our current explanation of seasons is that the Earth’s axis is tilted like that, so each hemisphere tilts toward the sun for half the year, and away for the other half. Better put that up. (Laughter) That’s a good explanation: hard to vary, because every detail plays a functional role. For instance, we know, independently of seasons, that surfaces tilted away from radiant heat are heated less, and that a spinning sphere, in space, points in a constant direction. And the tilt also explains the sun’s angle of elevation at different times of year, and predicts that the seasons will be out of phase in the two hemispheres. If they’d been observed in phase, the theory would have been refuted. But now, the fact that it’s also a good explanation, hard to vary, makes the crucial difference.

If the ancient Greeks had found out about seasons in Australia, they could have easily varied their myth to predict that. For instance, when Demeter is upset, she banishes heat from her vicinity, into the other hemisphere, where it makes summer. So, being proved wrong by observation, and changing their theory accordingly, still wouldn’t have got the ancient Greeks one jot closer to understanding seasons, because their explanation was bad: easy to vary. And it’s only when an explanation is good that it even matters whether it’s testable. If the axis-tilt theory had been refuted, its defenders would have had nowhere to go. No easily implemented change could make that tilt cause the same seasons in both hemispheres.

The search for hard-to-vary explanations is the origin of all progress. It’s the basic regulating principle of the Enlightenment. So, in science, two false aproaches blight progress. One is well known: untestable theories. But the more important one is explanationless theories. Whenever you’re told that some existing statistical trend will continue, but you aren’t given a hard-to-vary account of what causes that trend, you’re being told a wizard did it.

When you are told that carrots have human rights because they share half our genes — but not how gene percentages confer rights — wizard. When someone announces that the nature-nurture debate has been settled because there is evidence that a given percentage of our political opinions are genetically inherited, but they don’t explain how genes cause opinions, they’ve settled nothing. They are saying that our opinions are caused by wizards, and presumably so are their own. That the truth consists of hard to vary assertions about reality is the most important fact about the physical world. It’s a fact that is, itself, unseen, yet impossible to vary.

David Deutsch, Israeli-British physicist at the University of Oxford, David Deutsch: A new way to explain explanation,, July 2009 (tnx WildCat) (transcript)

See also:

David Deutsch on our place in the cosmos, (transcript), TED video

[14:23] “We can survive, and we can fail to survive. But it depends not on chance, but on whether we create the relevant knowledge in time. The danger is not at all unprecedented. Species go extinct all the time. Civilizations end. The overwhelming majority of all species and all civilizations that have ever existed are now history. And if we want to be the exception to that, then logically our only hope is to make use of the one feature that distinguishes our species, and our civilization, from all the others. Namely, our special relationship with the laws of physics. Our ability to create new explanations, new knowledge — to be a hub of existence. (…)

I’m a physicist, but I’m not the right kind of physicist. In regard to global warming, I’m just a layman. And the rational thing for a layman to do is to take seriously the prevailing scientific theory. And according to that theory, it’s already too late to avoid a disaster. Because if it’s true that our best option at the moment is to prevent CO2 emissions with something like the Kyoto Protocol, with its constraints on economic activity and its enormous cost of hundreds of billions of dollars or whatever it is, then that is already a disaster by any reasonable measure. (…)”

Timothy D. Wilson on The Social Psychological Narrative: ‘It’s not the objective environment that influences people, but their constructs of the world’
Science Is Not About Certainty. Science is about overcoming our own ideas and a continuous challenge of common sense
Why It’s Good To Be Wrong. David Deutsch on Fallibilism, Lapidarium notes