Lapidarium notes RSS

Amira Skomorowska's notes

"Everything you can imagine is real."— Pablo Picasso

Lapidarium

Tags:

Africa
Age of information
Ancient
Anthropology
Art
Artificial intelligence
Astronomy
Atheism
Beauty
Biography
Books
China
Christianity
Civilization
Cognition, perception, relativity
Cognitive science
Collective intelligence
Communication
Consciousness
Creativity
Culture
Curiosity
Cyberspace
Democracy
Documentary
Drawing
Earth
Economy
Evolution
Friendship
Funny
Future
Genetics
Globalization
Happiness
History
Human being
Illustrations
Imagination
Individualism
Infographics
Information
Inspiration
Internet
Knowledge
Language
Learning
Life
Literature
Logic
Love
Mathematics
Media
Metaphor
Mind & Brain
Multiculturalism
Music
Networks
Neuroscience
Painting
Paradoxes
Patterns
Philosophy
Poetry
Politics
Physics
Psychology
Rationalism
Religions
Science
Science & Art
Self improvement
Semantics
Society
Sociology
Storytelling
Technology
The other
Time
Timeline
Traveling
Unconsciousness
Universe
USA
Video
Violence
Visualization


Homepage
Twitter
Facebook

A Box Of Stories
Reading Space

Contact

Archive

Jun
18th
Tue
permalink

Do Geography and Altitude Shape the Sounds of a Language?

imageLanguages that evolve at high elevations are more likely to include a sound that’s easier to make when the air is thinner, new research shows. (Photo: A. Skomorowska)

"[R]ecently, Caleb Everett, a linguist at the University of Miami, made a surprising discovery that suggests the assortment of sounds in human languages is not so random after all.

When Everett analyzed hundreds of different languages from around the world, as part of a study published today in PLOS ONE, he found that those that originally developed at higher elevations are significantly more likely to include ejective consonants. Moreover, he suggests an explanation that, at least intuitively, makes a lot of sense: The lower air pressure present at higher elevations enables speakers to make these ejective sounds with much less effort. (…)

imageThe origin points of each of the languages studied, with black circles representing those with ejective sounds and empty circles those without. The inset plots by latitude and longitude the high-altitude inhabitable regions, where elevations exceed 1500 meters. (1) North American cordillera, (2) Andes, (3) Southern African plateau, (4) East African rift, (5) Caucasus and Javakheti plateau, (6) Tibetan plateau and adjacent regions. Image via PLOS ONE/Caleb Everett

Everett started out by pulling a geographically diverse sampling of 567 languages from the pool of an estimated 6,909 that are currently spoken worldwide. For each language, he used one location that most accurately represented its point of origin, according to the World Atlas of Linguistic Structures. English, for example, was plotted as originating in England, even though it’s spread widely in the years since. But for most of the languages, making this determination is much less difficult than for English, since they’re typically pretty restricted in terms of geographic scope (the average number of speakers of each languageanalyzedis just 7,000).

He then compared the traits of the 475 languages that do not contain ejective consonants with the 92 that do. The ejective languages were clustered in eight geographic groups that roughly corresponded with five regions of high elevation—the North American Cordillera (which include the Cascades and the Sierra Nevadas), the Andes and the Andean altiplano, the southern African plateau, the plateau of the east African rift and the Caucasus range.

When Everett broke things down statistically, he found that 87 percent of the languages with ejectives were located in or near high altitude regions (defined as places with elevations 1500 meters or greater), compared to just 43 precent of the languages without the sound. Of all languages located far from regions with high elevation, just 4 percent contained ejectives. And when he sliced the elevation criteria more finely—rather than just high altitude versus. low altitude—he found that the odds of a given language containing ejectives kept increasing as the elevation of its origin point also increased:

image

Everett’s explanation for this phenomenon is fairly simple: Making ejective sounds requires effort, but slightly less effort when the air is thinner, as is the case at high altitudes. This is because the sound depends upon the speaker compressing a breath of air and releasing it in a sudden burst that accompanies the sound, and compressing air is easier when it’s less dense to begin with. As a result, over the thousands of years and countless random events that shape the evolution of a language, those that developed at high altitudes became gradually more and more likely to incorporate and retain ejectives. Noticeably absent, however, are ejectives in languages that originate close to the Tibetean and Iranian plateaus, a region known colloquially as the roof of the world.

The finding could prompt linguists to look for other geographically-driven trends in the languages spoken around the world. For instance, there might be sounds that are easier to make at lower elevations, or perhaps drier air could make certain sounds trip off the tongue more readily.”

, Do Geography and Altitude Shape the Sounds of a Language?, Smithsonian, June 12, 2013.

See also:

Ejectives, High Altitudes, and Grandiose Linguistic Hypothese, June 17, 2013
☞ Caleb Everett, Evidence for Direct Geographic Influences on Linguistic Sounds: The Case of Ejectives, PLOS ONE 2013

Abstract:

"We present evidence that the geographic context in which a language is spoken may directly impact its phonological form. We examined the geographic coordinates and elevations of 567 language locations represented in a worldwide phonetic database. Languages with phonemic ejective consonants were found to occur closer to inhabitable regions of high elevation, when contrasted to languages without this class of sounds. In addition, the mean and median elevations of the locations of languages with ejectives were found to be comparatively high.

The patterns uncovered surface on all major world landmasses, and are not the result of the influence of particular language families. They reflect a significant and positive worldwide correlation between elevation and the likelihood that a language employs ejective phonemes. In addition to documenting this correlation in detail, we offer two plausible motivations for its existence.

We suggest that ejective sounds might be facilitated at higher elevations due to the associated decrease in ambient air pressure, which reduces the physiological effort required for the compression of air in the pharyngeal cavity–a unique articulatory component of ejective sounds. In addition, we hypothesize that ejective sounds may help to mitigate rates of water vapor loss through exhaled air. These explications demonstrate how a reduction of ambient air density could promote the usage of ejective phonemes in a given language. Our results reveal the direct influence of a geographic factor on the basic sound inventories of human languages.”

Evolution of Language tested with genetic analysis
Are We “Meant” to Have Language and Music? How Language and Music Mimicked Nature and Transformed Ape to Man
Mark Changizi on How To Put Art And Brain Together

Jun
20th
Wed
permalink

The crayola-fication of the world: How we gave colors names, and it messed with our brains

     

"We cut nature up, organize it into concepts, and ascribe significances as we do, largely because we are parties to an agreement to organize it in this way—an agreement that holds throughout our speech community and is codified in the patterns of our language (…) all observers are not led by the same physical evidence to the same picture of the universe, unless their linguistic backgrounds are similar”

Benjamin Whorf, Science and linguistics, first published in 1940 in MIT Technology Review [See also: linguistic relativity]

"The implication is that language may affect how we see the world. Somehow, the linguistic distinction between blue and green may heighten the perceived difference between them. (…)

If you have a word to distinguish two colors, does that make you any better at telling them apart? More generally, does the linguistic baggage that we carry effect how we perceive the world? This study was designed to address Whorf’s idea head on.

As it happens, Whorf was right. Or rather, he was half right.

The researchers found that there is a real, measurable difference in how we perform on these two tasks. In general, it takes less time to identify that odd blue square compared to the odd green.  This makes sense to anyone who’s ever tried looking for a tennis ball in the grass. It’s not that hard, but I’d rather the ball be blue. In once case you are jumping categories (blue versus green), and in the other, staying with a category (green versus green).

However, and this is where things start to get a bit odd, this result only holds if the differently colored square was in the right half of the circle. If it was in the left half (…), then there’s no difference in reaction times – it takes just as long to spot the odd blue as the odd green.  It seems that color categories only matter in the right half of your visual field! (…)

It’s easier to tell apart colors with different names, but only if they are to your right. Keep in mind that this is a very subtle effect, the difference in reaction time is a few hundredths of a second.

So what’s causing this lopsidedness?  Well, if you know something about how the brain works, you might have already guessed. The crucial point is that everything that we see in the right half of our vision is processed in the left hemisphere of our brain, and everything we see in the left half is processed by the right hemisphere. And for most of us, the left brain is stronger at processing language. So perhaps the language savvy half of our brain is helping us out.

    

It’s not just English speakers that show this asymmetry. Koreans are familiar with the colors yeondu and chorok. An English speaker would call them both green (yeondu perhaps being a more yellowish green). But in Korean it’s not a matter of shade, they are both basic colors. There is no word for green that includes both yeondu and chorok.

      
To the left of the dotted line is yeondu, and to the right chorok. Is it still as easy to spot the odd square in the circle?

And so imagine taking the same color ID test, but this time with yeondu and chorok instead of blue and green. A group of researchers ran this experiment. They discovered that among those who were the fastest at identifying the odd color, English speakers showed no left brain / right brain distinction, whereas Korean speakers did. It’s plausible that their left brain was attuned to the distinction between yeondu and chorok.

But how do we know that language is the key here? Back to the previous study. The researchers repeated the color circle experiment, but this time threw in a verbal distraction. The subjects were asked to memorize a word before each color test. The idea was to keep their language circuits distracted. And at the same time, other subjects were shown an image to memorize, not a word. In this case, it’s a visual distraction, and the language part of the brain needn’t be disturbed.

They found that when you’re verbally distracted, it suddenly becomes harder to separate blue from green (you’re slower at straddling color categories). In fact the results showed that people found this more difficult then separating two shades of green. However, if the distraction is visual, not verbal, things are different. It’s easy to spot the blue among green, so you’re faster at straddling categories.

All of this is only true for your left brain. Meanwhile, your right brain is rather oblivious to these categories (until, of course, the left brain bothers to inform it). The conclusion is that language is somehow enhancing your left brain’s ability to discern different colors with different names. Cultural forces alter our perception in ever so subtle a way, by gently tugging our visual leanings in different directions. Oddly enough, Whorf was right, but only when it comes to half your brain.

Imagine a world without color names. You lived in such a world once, when you were an infant. Do you remember what it was like? Anna Franklin is a psychologist who is particularly interested in where color categories come from. She studies color recognition in infants, as a window into how the brain organizes color.

Here she is discussing her work in this incredible clip from a BBC Horizon documentary called ‘Do you see what I see?‘. (…) It starts off with infants, and then cuts to the Himba tribe who have a highly unusual color naming system. You’ll see them taking the color wheel test, with very surprising results.

Surprisingly, many children take a remarkably long time to learn their color names. By the time they can name dozens of objects, they still struggle with basic colors. A two year old may know that a banana is yellow or an apple is red, but if you show them a blue cup, odds are even that they’ll call it red. And this confusion can persist even after encountering hundreds of examples, until as late as the age of four. There have been studies that show that very young sighted children are as likely to identify a color correctly as blind children of the same age. They rely on their experience, rather than recognize the color outright. (…)

The big question is when children learn their color words, does their perception of the world change? Anna Franklin (who we met in the video above) and colleagues took on this question. Working with toddlers aged two to four, they split them into two groups. There were the namers, who could reliably distinguish blue from green, and the politely-named learners, who couldn’t. The researchers repeated the color circle experiment on these children. Rather than have them press a button (probably not a good idea), they tracked the infants’ eyes to see how long it took them to spot the odd square. (…)

As toddlers learn the names of colors, a remarkable transformation is taking place inside their heads. Before they learn their color names, they are better at distinguishing color categories in their right brain (Left Visual Field). In a sense, their right brain understands the difference between blue and green, even before they have the words for it. But once they acquire words for blue and green, this ability jumps over to the left brain (Right Visual Field).

Think about what that means. As infant brains are rewiring themselves to absorb our visual language, the seat of categorical processing jumps hemispheres from the right brain to the left. And it stays here throughout adulthood. Their brains are furiously re-categorizing the world, until mysteriously, something finally clicks into place. So the next time you see a toddler struggling with their colors, don’t be like Darwin, and cut them some slack. They’re going through a lot.”

Aatish Bhatia, Ph.D. at Rutgers University, The crayola-fication of the world: How we gave colors names, and it messed with our brains (part II), Empirical Zeal, June 11, 2012. (Illustration by Scott Campbell).

See also:

☞ Regier, T., & Kay, P. (2009). Language, thought, and color: Whorf was half right Trends in Cognitive Sciences, Trends in Cognitive Sciences, 13 (10), 439-446 
☞ Gilbert AL, Regier T, Kay P, & Ivry RB (2006), Whorf hypothesis is supported in the right visual field but not the left, Proceedings of the National Academy of Sciences of the United States of America, 103 (2), 489-94
Aatish Bhatia, The crayola-fication of the world: How we gave colors names, and it messed with our brains (part I)

"Why is the color getting lost in translation? This visual conundrum has its roots in the history of language.  (…) What really is a color? Just like the crayons, we’re taking something that has no natural boundaries – the frequencies of visible light – and dividing into convenient packages that we give a name. (…) Languages have differing numbers of color words, ranging from two to about eleven. Yet after looking at 98 different languages, they saw a pattern. It was a pretty radical idea, that there is a certain fixed order in which these color names arise. This was a common path that languages seem to follow, a road towards increasing visual diversity. (…)

Cultures are quite different in how their words paint the world. (…) For the 110 cultures, you can see how many basic words they use for colors. To the Dani people who live in the highlands of New Guiniea, objects comes in just two shades. There’s mili for the cooler shades, from blues and greens to black, and mola for the lighter shades, like reds, yellows and white. Some languages have just three basic colors, others have 4, 5, 6, and so on. (…)

If you were a mantis shrimp, your rainbow would be unimaginably rich, with thousands, maybe tens of thousands of colors that blend together, stretching from deep reds all the way to the ultraviolet. To a mantis shrimp, our visual world is unbearably dull. (Another Radiolab plug: in their episode on Color, they use a choir to convey this idea through sound. A visual spectrum becomes a musical one. It’s one of those little touches that makes this show genius.”

Color words in different languages, Fathom, Nov 8, 2012.